Answers to Relative Rates of Growth Homework

For each pair of functions given, determine which one (if either) grows faster as \(x \to \infty \). You must give detailed arguments using limits for \#2c,d,e and \#3a,b,c,e,g. For each of the others you may use limits or just explain your reasoning with a sentence. Try to notice patterns while you do this!

1.a) \(x^2, \ 2 - \sqrt{x} + 4x^2 \) same growth rate

b) \(x^2, \ \sin(x^3) + x^2 \) same growth rate

c) \(100x^2, \ 2 - \sqrt{x} + 4x^3 \) \(2 - \sqrt{x} + 4x^3 \) grows faster

d) \(100x^2, \ 2x + x^2 \) \(2x + x^2 \) grows faster

2.a) \(x^{100}, \ e^x \) \(e^x \) grows faster

b) \(2^x, \ e^x \) \(e^x \) grows faster

c) \(2^x, \ e^{-x} \) \(2^x \) grows faster

d) \(2^{2x}, \ e^x \) \(2^{2x} \) grows faster

e) \(x2^x, \ e^x \) \(e^x \) grows faster

f) \(x, \ e^{\cos x} \) \(x \) grows faster

3.a) \(\ln x, \ \log_2 x \) same growth rate

b) \(\ln x, \ x \) \(x \) grows faster

c) \(\ln x, \ \sqrt[10]{x} \) \(\sqrt[10]{x} \) grows faster

d) \(\ln x, \ \cos \ln x \) \(\ln x \) grows faster

e) \(\ln x, \ \ln x^2 \) same growth rate

f) \(\ln x, \ (\ln x)^2 \) \((\ln x)^2 \) grows faster

g) \(\ln x, \ \ln(\ln x) \) \(\ln x \) grows faster