Tiling a Deficient Rectangle with T-Tetrominoes

Shuxin Zhan

August 6, 2012
A **tetromino** is a two-dimensional shape formed by connecting 4 unit squares along their edges.

T-tetromino is a tetromino in the shape of a "T".

- A region, \(R \), is **tileable** by a given set of tiles if it can be covered completely and without any overlap.
- A **deficient rectangle** is a positive integer dimensioned rectangle with sides of at least 2, and a 1x1 unit square removed.
- In his 1965 paper, D.W. Walkup discovered that a \(a \times b \) rectangle is tillable by T-tetrominoes if and only if \(a \) and \(b \) are both multiples of 4.
T-tetrominos have area 4, so in order for an $m \times n$ deficient board to be tileable, $m \equiv n \equiv 1 \pmod{4}$ or $m \equiv n \equiv 3 \pmod{4}$.

Shuxin Zhan

Tiling a Deficient Rectangle with T-Tetrominoes
For any board, we represent it on quadrant I of the cartesian plane with the lines $y = 0$, $y = m$, $x = 0$, and $x = n$. Associate each square in the board with the coordinate (x, y) where (x, y) is the point at the bottom left corner of the square.

- A **segment** is a line segment of length 1 forming the edge of a unit square of the quadrant.
- A segment is a **cut** if in every dissection of the quadrant it is one of the ten boundary segments of some T-tetromino.
- A point is **cornerless** if it does not lie at any of the six outside corners of any T-tetromino in any tiling of the board and **inner cornerless** if it does not lie at any of the two inside corners of any T-tetromino in any tiling of the board.
 - In a tiling of a rectangle with T-tetrominoes, inner corner \implies outer corner, and so cornerless point \implies inner cornerless.
 - In a deficient board, we can cut the board such that:
 - a cornerless point not surrounding the missing square \implies inner cornerless.
- A **translate** of a point, segment, or T-tetromino is another point, segment, or T-tetromino in the quadrant obtained from a displacement of $2k$ in y and $-2k$ in x, where k is any integer.
Consider an $m \times n$ board on quadrant I. A point is called type-A if it is congruent to $(0, 0)$ or $(2, 2)$ (mod 4). It is called type-B if it is congruent to $(0, 2)$ or $(2, 0)$ (mod 4).

Lemma

Every type-B point is cornerless and each of the 2, 3, or 4 segments incident on a type-A point is a cut.

Sketch of Proof.

For $\lambda \in \mathbb{N}$, let $P(\lambda)$ be the proposition that the lemma holds for all type-A and type-B points on or below the line $x + y = 4\lambda$. $P(0)$ is obviously true, because the segments incident on the origin must be cuts. Assume $P(\lambda)$ holds, the rest of Walkup’s paper shows that this implies $P(\lambda + 1)$ also holds.
Walkup’s Lemma

Figure: 12×12 board with type-A (intersection of black lines) and type-B (black dots) points shown.
Consider an \(m \times n \) board on quadrant I. A point is called:

- **type-A\(_1\)** if its coordinates are congruent to \((0, 0)\) or \((2, 2)\) (mod 4)
- **type-B\(_1\)** if its coordinates are congruent to \((0, 2)\) or \((2, 0)\) (mod 4).
- **type-A\(_2\)** if its coordinates are congruent to \((m, n)\) or \((m - 2, n - 2)\) (mod 4)
- **type-B\(_2\)** if its coordinates are congruent to \((m, n - 2)\) or \((m - 2, n)\) (mod 4).

Any translate of a type-A\(_1\), type-A\(_2\), type-B\(_1\), and type-B\(_2\) is another point of the same type.

For a deficient \(m \times n \) board where \(m \equiv n \equiv 1 \) (mod 4) or \(m \equiv n \equiv 3 \) (mod 4), all type-A\(_2\) points are \((1, 1)\) (mod 4) or \((3, 3)\) (mod 4) and all type-B\(_2\) points are \((1, 3)\) (mod 4) or \((3, 1)\) (mod 4).

Lemma

Let \(m \times n \) be a deficient board with the square missing at \((x_0, y_0)\). Then,

1. every type-B\(_1\) point below the line \(x + y = 4 \left\lfloor \frac{x_0 + y_0}{4} \right\rfloor \) is cornerless and each of the 2,3, or 4 segments incident on a type-A\(_1\) point and below \(x + y = 4 \left\lfloor \frac{x_0 + y_0}{4} \right\rfloor \) is a cut.

2. every type-B\(_2\) point above the line \(x + y = 4 \left\lceil \frac{x_0 + y_0 - 1}{4} \right\rceil + 2 \), is cornerless and each of the 2,3, or 4 segments incident on a type-A\(_2\) point and above \(x + y = 4 \left\lceil \frac{x_0 + y_0 - 1}{4} \right\rceil + 2 \) is a cut.
Figure: 7×11 deficient board with type-A_1 (black dots), A_2 (open dots), B_1 (intersection of black lines), and B_2 (intersection of grey lines) points shown.
Figure: Tiling is not possible for \((x_0, y_0) = (0, 0)\) or \((2, 2) \text{ (mod 4)}\)
Claim

Segments a and b are cuts.

Proof.

By contradiction, first assume a is not a cut. Consider the ways to tile square 1. Tetrominoes 1-2-3-4 and 1-2-5-6 cannot be in the tiling because points α and β are cornerless. This leaves 1-3-7-8, 1-3-5-8, 1-3-5-7, and 1-5-7-8. Since a is not a cut, there must exist a tiling of the board in which a is not on a boundary segment, so there must exist a tiling that includes 1-5-7-8. This tiling must also contain 2-3-9-15, since this is the only way to tile square 3 without a being on the boundary of a tile. The only ways to tile square 10 without intersecting the nearby cuts are by 10-11-12-13 or 10-13-14-16, but both are not possible, because γ and δ are cornerless. This is a contradiction, so a must be a cut, and by symmetry, b is also a cut.

The only ways of tiling square 2 without intersecting a or b is by 2-9-10-11 or 2-10-15-16, but γ and δ are cornerless, so there are no possible ways to tile this deficient board.
Claim: Segments a and b are cuts.
Assume a is not a cut and consider the ways to tile square 1.

Figure: Assume a is not a cut. There must exist some tiling of the board in which a is not a boundary. Consider the ways to tile square 1.
Figure: Tetrominoes 1-2-3-4 and 1-2-5-6 cannot be in the tilling because points α and β are cornerless.
Figure: Tetrominoes 1-2-3-4 and 1-2-5-6 cannot be in the tiling because points α and β are cornerless.
Figure: Since a is not a cut, there must exist a tiling of the board in which a is not on a boundary segment, so there must exist a tiling that includes 1-5-7-8.
Figure: This tiling must also contain 2-3-9-15, since this is the only way to tile square 3 without a being on the boundary of a tile.
Figure: The only ways to tile square 10 without intersecting the nearby cuts are by 10-11-12-13 or 10-13-14-16, but both are not possible, because γ and δ are cornerless.
Segments a and b are cuts

Figure: The only ways of tiling square 2 without intersecting a or b is by 2-9-10-11 or 2-10-15-16, but γ and δ are cornerless, so there are no possible ways to tile this deficient board.