Math 312, Fall 2004
Final
Total 100 pts
“Prove” means give a careful, well-explained proof.
Put your name on the exam.
Good luck!

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
</tr>
</tbody>
</table>
1. Give the definition of a uniformly continuous function on $[a, b]$.
2. State the Cauchy criterion for convergence of sequences and prove it.
Reminder: the Cauchy criterion is about convergence of sequences \(\{a_n\} \) that satisfy:
given \(\varepsilon > 0 \) there is \(N \) so that \(|a_n - a_m| < \varepsilon \) for \(m,n > N \).
3. Define a sequence recursively by $a_{n+1} = \sqrt{2a_n}$, $a_0 > 0$. Prove that the sequence \(\{a_n\} \) is monotone and bounded. Prove that there is the unique limit L, independent of a_0.
4. Suppose a function \(f(x) \) in \([a, b]\) is such that for any \([c, d]\), \(a \leq c < d \leq b\)

\[
\sup_{x \in [c,d]} f(x) - \inf_{x \in [c,d]} f(x) \leq \sqrt{d-c}.
\]

Prove that \(f(x) \) has a maximum and minimum on \([a, b]\).

Hint. Prove that \(f(x) \) is continuous on \([a, b]\).
5. Find the radius of convergence R and determine convergence at $x = R, x = -R$ for

$$\sum \left(\frac{n}{n+2} \right)^{n^2} x^n.$$
6. For a function

\[f(x) = \begin{cases}
1/q, & x = p/q \in \mathbb{Q}, \ (p, q) = 1, \\
0, & x \not\in \mathbb{Q}
\end{cases} \]

determine directly from the definitions where \(f(x) \) is
a) continuous,
b) integrable.
7. Suppose a function $f(x)$ is continuous on a closed interval $I = [a, b]$, and that $f(I) = [f(a), f(b)]$. Suppose further that as x varies over I, $f(x)$ never repeats a value. Prove $f(x)$ is strictly increasing.
8. Suppose \(f(x) \) is differentiable on the \textit{open} interval \(I = (0, 1) \). Also suppose \(f'(x) \) is (globally) bounded on \(I \). Prove that \(f(x) \) is uniformly continuous on \(I \).

Hint. One way to prove it is to show that the secants of \(f(x) \) has bounded slopes, using the mean-value theorem.
9. Suppose $f(x)$ is differentiable on $[-a, a]$, $f(-a) = f(a) = 0$, $f(0) = 1$. Prove that there are two points $-a < b < 0$ and $0 < c < a$ such that

$$f'(b) = -f'(c).$$

Hint. Use the mean-value theorem.
10. Directly evaluate \(\int_1^a f(x)dx \) where \(f(x) = x^k \), and \(k \) is a positive integer by using upper sums and

\[
\lim_{|P| \to 0} U_f(P) = \int_1^a f(x)dx.
\]

Use the \(n \)-partition \(1 < r < r^2 < \cdots < r^{n-1} < a \), where \(r = a^{1/n} \).

Remark: You may use here the l’Hospital’s rule:

\[
\lim_{n \to \infty} \frac{a^{1/n} - 1}{a^{(k+1)/n} - 1} = \frac{1}{k + 1}.
\]