M598B: Homework Assignment 1

1. Prove that the projection of a sum of vectors onto any axis equals the sum of the projections of the vectors onto the same axis.
2. A parallelogram has acute angle $\pi/3$ and side lengths $a = 3, b = 5$. Thinking of the corresponding sides as vectors \mathbf{a} and \mathbf{b} find
 (a) The vectors $\mathbf{a} + \mathbf{b}$ and $\mathbf{a} - \mathbf{b}$ (what is their geometric meaning?); (No coordinate system needed.)
 (b) The area of the parallelogram.
3. Given the vectors
 \[\mathbf{A} = i_1 + 2i_2 + 3i_3, \quad \mathbf{B} = 4i_1 + 5i_2 + 6i_3, \]
 \[\mathbf{C} = 3i_1 + 2i_2 + i_3, \quad \mathbf{D} = 6i_1 + 5i_2 + 4i_3; \]
 where i_1, i_2, i_3 are an orthonormal basis. Find
 (a) $\mathbf{A} + \mathbf{B} - \mathbf{C}$;
 (b) $\mathbf{A} \cdot \mathbf{B}$;
 (c) The angle made by \mathbf{C} and \mathbf{D};
 (d) The projection of \mathbf{A} onto the direction of \mathbf{B};
 (e) The vector product $\mathbf{A} \times \mathbf{B}$.
4. Show that the four vectors \mathbf{A}, \mathbf{B}, \mathbf{C}, and \mathbf{D} are linearly dependent.
5. Verify the following identity:
 \[\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) + \mathbf{b} \times (\mathbf{c} \times \mathbf{a}) + \mathbf{c} \times (\mathbf{a} \times \mathbf{b}) = 0. \]