3.1. Banach and Hilbert spaces (Continued)

But we do wonder: If S is complete with respect to one norm, is it complete with respect to other norms?

Let us look at the set of all continuous functions C. It has an inner product. The inner product induces a norm

$$
\|f\|_{L^2} = \left(\int_{a}^{b} (f(x))^2 \, dx \right)^{1/2}.
$$

We can prove easily that it is indeed a norm. This is an important norm for applications. We wonder whether the set C is complete under this norm.

Let us consider a sequence of continuous functions:

$$
f_n(t) = \begin{cases}
0, & 0 \leq t < \frac{1}{2} - \frac{1}{n}, \\
\frac{1}{2} + \frac{n}{2}(t - \frac{1}{2}), & \frac{1}{2} - \frac{1}{n} \leq t \leq \frac{1}{2} + \frac{1}{n} \\
1, & \frac{1}{2} + \frac{1}{n} < t \leq 1.
\end{cases}
$$

From its graph (see text book) it is clear that it "converges" to a function

$$
f_0(t) = \begin{cases}
0, & 0 \leq t < \frac{1}{2}, \\
\frac{1}{2}, & t = \frac{1}{2} \\
1, & \frac{1}{2} < t \leq 1.
\end{cases}
$$

We show this convergence is not in the sup-norm:

$$
\|f_n - f_0\| = \max_{t \in [0,1]} |f_n(t) - f_0(t)| = 1,
$$

which does not converge to zero. However, we can show that it converges to f_0 in the L^2 norm as follows. We first have

$$
\|f_n - f_0\|_{L^2} = \left(\int_{\frac{1}{2}}^{\frac{1}{2} + \frac{1}{n}} (f_n(t) - f_0(t))^2 \, dt \right)^{1/2}
= \left(\int_{\frac{1}{2}}^{\frac{1}{2} + \frac{1}{n}} (f_n(t) - f_0(t))^2 \, dt \right)^{1/2},
$$

(1)

where we have shortened the interval of integration since the difference between $f_n(t)$ and $f_0(t)$ is zero outside the middle interval. Note that the middle portion
shrinks in length to zero while the integrand is no larger than 1, we have

\[
\|f_n - f_0\|_{L^2} \leq \left(\int_\frac{1}{2}^{\frac{1}{2} + \frac{1}{n}} (1)^2 \, dt \right)^{\frac{1}{2}}
\]

\[
= \left(\left(\frac{1}{2} + \frac{1}{n} \right) - \left(\frac{1}{2} - \frac{1}{n} \right) \right)^{\frac{1}{2}}
\]

\[
= \left(\frac{2}{n} \right)^{\frac{1}{2}}
\]

which goes to zero. This shows that \(f_0 \) is a limit in the \(L^2 \) norm. But \(f_0 \) does not belong to \(C \). This is rather like the limit \(\sqrt{2} \) of rational numbers. When we collect all possible functions that are limits of continuous functions on \([a, b]\) in the \(L^2 \) norm, we get a larger class of functions than \(C[a, b] \).

(We showed in class that this sequence is a Cauchy sequence.)

Definition 3.5. The collection of all possible functions that are limits of continuous functions on \([a, b]\) in the \(L^2 \) norm is called the space \(L^2[a, b] \).

It turns out that \(L^2[a, b] \) is complete with respect to its norm \(L^2 \). It is a Banach space. By the next definition, it is also a Hilbert space.

Definition 3.6 (Hilbert space). A Banach space whose norm is induced by an inner product is called a Hilbert space.

The ordinary Euclidean space \(R^n \) with the square-root norm is a Hilbert space.

The space of all possible functions that are limits of continuous functions on \([a, b]\) in the \(L^p \) norm \((1 \leq p < \infty)\):

\[
\|f\|_{L^p} = \left(\int_a^b |f(x)|^p \, dx \right)^{1/p}
\]

is called the space \(L^p[a, b] \). It is complete and a Banach space. Except for \(p = 2 \), all other \(L^p[a, b] \) spaces are not Hilbert spaces.

Example. The function

\[
g(x) = \frac{1}{|x|^\frac{3}{4}} \in L^2[-1, 1]
\]

which is not only discontinuous, but also unbounded.

To get to know these \(L^p \) spaces well, one needs to take the course “Real Analysis.”