1. A coordinate-independent representation of the gradient is given by

\[\nabla \phi(x) = \lim_{V \to 0} \frac{1}{V} \int_{\partial V} n(y) \phi(y) \, dS_y \]

where \(V \) is a domain that contains the point \(x \) and \(n \) is the unit exterior normal to \(\partial V \). Either give a proof of this formula or say “Yes, I have read the proof from the text, and understand it.”

2. Consider a rigid body rotating about a fixed point \(O \) with angular velocity \(w \). See Figure 1.6.3. The velocity of a point with position vector \(r \) is given by

\[\mathbf{v} = w \times \mathbf{r}. \]

![Figure 1.6.3. Curl is twice angular velocity.](image)

Show that

\[
\begin{align*}
\text{curl}_2 \mathbf{v} &= 2w_2 \\
\text{curl}_3 \mathbf{v} &= 2w_3.
\end{align*}
\]

Combined with the calculation for \(\text{curl}_1 \mathbf{v} = 2w_1 \) done in Lecture 6, one can conclude that

\[\text{curl} \mathbf{v} = 2w. \]

3. (Summation convention) Expand the terms \(A_i B^k C_i \) and \(a_{ij} b_j \). Is there a summation in \(a_i + b_i \)?

4. The new coordinate system \(K' \) is obtained by rotating the \(i \), coordinate system an angle \(\theta \) about the \(x_3 \) axis counterclockwise. Find the coefficients (i.e., \(\alpha_{ij} \) and \(\alpha_{ij}' \)) in the equations:

\[
\begin{align*}
x'_i &= \alpha_{ij} x_j \\
x_i &= \alpha_{ij}' x'_j.
\end{align*}
\]
5. The unit base vectors \mathbf{i}'_i of a new coordinate system K' are given by

\[
\mathbf{i}'_1 = \frac{i_2}{\sqrt{3}} + \frac{2i_3}{\sqrt{6}}, \quad \mathbf{i}'_2 = \frac{i_1}{\sqrt{2}} - \frac{i_2}{\sqrt{3}} + \frac{i_3}{\sqrt{6}}, \quad \mathbf{i}'_3 = \frac{i_1}{\sqrt{2}} + \frac{i_2}{\sqrt{3}} - \frac{i_3}{\sqrt{6}}.
\]

Find the coefficients in the equation: $x'_i = \alpha_{ij} x_j$.

6. Given the transformation of coordinates

\[
x'_i = \alpha_{ij} x_j
\]

where

\[
(\alpha_{ij}) = \begin{pmatrix}
\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \\
-\frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} \\
\frac{\sqrt{6}}{3} & \frac{\sqrt{6}}{3} & \frac{\sqrt{6}}{3}
\end{pmatrix}.
\]

If a vector \mathbf{v} has the components $(2, -3, 6)$ with respect to the x_i-coordinate system, find its components in the x'_i-system.

7. Given the second-order tensor

\[
(a_{ij}) = \begin{pmatrix}
0 & -1 & 3 \\
1 & 0 & 2 \\
-3 & -2 & 0
\end{pmatrix}.
\]

Find the components a'_{21} and a'_{33} of this tensor in the coordinate system x'_i defined by $x'_i = \alpha_{ij} x_j$ where

\[
(\alpha_{ij}) = \begin{pmatrix}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}.
\]

If you can use computer, then find all the components a'_{ij}. (The formula in matrix notation is $(A') = (\alpha)(A)(\alpha)^T$.)