Announcement: New office hours are
Mondays, Tuesdays, and Wednesdays from 11:00–11:55am.

6.3. (Continued)

For the inhomogeneous problem
\[
\frac{\partial^2 u}{\partial t^2} - c^2 \left(\frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2} + \frac{\partial^2 u}{\partial x_3^2} \right) = f(t, x_1, x_2, x_3),
\]
(1)
\[u(0, \vec{x}) = 0,\]
(2)
\[\frac{\partial u}{\partial t}(0, \vec{x}) = 0,\]
(3)
a solution is given by Duhamel’s principle (Fritz John, PDE, p.135)
\[
u(t, \vec{x}) = \frac{1}{4\pi c^2} \int_0^t \frac{ds}{t-s} \int_{|y-x|=c(t-s)} f(s, \vec{y})dS_y.
\]
(4)

Duhamel’s principle: Given a time \(t > 0\). Replace force \(f(s, \vec{x}), s \in [0, t]\), by
acquired velocity at time
\[0 = s_1 < s_2 < s_3 < \cdots < s_n < s_{n+1} = t,
\]
and consider \(w_i(s, \vec{x})\):
\[
\frac{\partial^2 w_i}{\partial s^2} - c^2 \left(\frac{\partial^2 w_i}{\partial x_1^2} + \frac{\partial^2 w_i}{\partial x_2^2} + \frac{\partial^2 w_i}{\partial x_3^2} \right) = 0, \quad s > s_i,
\]
(5)
\[w_i(s_i, \vec{x}) = 0,\]
(6)
\[\frac{\partial w_i}{\partial s}(s_i, \vec{x}) = f(s_i, \vec{x})(s_{i+1} - s_i),\]
(7)
The solution \(w_i(s, \vec{x})\), which we assume is zero for \(s < s_i\), is the part of the
displacement \(u(t, \vec{x})\) that is resulted from a pulse force \(f(s, \vec{x})\) during the time interval
\([s_i, s_{i+1}]\), which is equivalent to a velocity \(f(s_i, \vec{x})(s_{i+1} - s_i)\). The final total displace-
ment \(u(t, \vec{x})\) is by superposition
\[
u(t, \vec{x}) = \sum_{i=1}^n w_i(t, \vec{x}).
\]
(8)
Let \(n \to \infty\) and all \(s_{i+1} - s_i \to 0\), the approximation becomes exact. We can solve
(5)-(7) just as before (Poisson formula):
\[
w_i(s, \vec{x}) = \frac{1}{4\pi c^2(s-s_i)} \int_{|y-x|=c(s-s_i)} (s_{i+1} - s_i)f(s_i, \vec{y})dS_y, \quad s > s_i.
\]
Details are in John, PDE, p.135.

Applications: Maxwell’s equations of electromagnetism \((\vec{E}, \vec{B})\) in vacuum are

\[
\frac{\partial^2 \vec{E}}{\partial t^2} - c^2 \left(\frac{\partial^2 \vec{E}}{\partial x_1^2} + \frac{\partial^2 \vec{E}}{\partial x_2^2} + \frac{\partial^2 \vec{E}}{\partial x_3^2} \right) = 0,
\]

\[
\frac{\partial^2 \vec{B}}{\partial t^2} - c^2 \left(\frac{\partial^2 \vec{B}}{\partial x_1^2} + \frac{\partial^2 \vec{B}}{\partial x_2^2} + \frac{\partial^2 \vec{B}}{\partial x_3^2} \right) = 0,
\]

where \(c = \left(\frac{1}{\rho} \right)^{1/2}\) is the speed of light in vacuum. We see that the speed of light is lower in air since the density \(\rho\) is higher.

6.4. Hadamard’s method of descent.

This section has not been covered in class, please study it yourself.

In \(\mathbb{R}^2\), the wave equation

\[
\frac{\partial^2 u}{\partial t^2} - c^2 \left(\frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2} \right) = 0,
\]

\[
u(0, x_1, x_2) = g(x_1, x_2),
\]

\[
\frac{\partial u}{\partial t}(0, x_1, x_2) = h(x_1, x_2),
\]

can be regarded as a problem in \(\mathbb{R}^3\) where \(u(t, x_1, x_2, x_3)\) is independent of the third dimension \(x_3\). In this way, we find that the spherical integrals on the sphere

\[
|\vec{y} - \vec{x}| = \left((y_1 - x_1)^2 + (y_2 - x_2)^2 + y_3^2 \right)^{1/2} = ct
\]

can be changed into top and bottom integrals over the disk

\[
(y_1 - x_1)^2 + (y_2 - x_2)^2 < (ct)^2.
\]

Thus

\[
u(t, x_1, x_2) = \frac{1}{2\pi c} \int \int_{r<ct} \frac{h(y_1, y_2)}{\left(c^2 t^2 - r^2 \right)^{1/2}} dy_1 dy_2 + \frac{\partial}{\partial t} \left[\frac{1}{2\pi c} \int \int_{r<ct} \frac{g(y_1, y_2)}{\left(c^2 t^2 - r^2 \right)^{1/2}} dy_1 dy_2 \right],
\]

where \(r = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}\).
Figure 6.4.1. Integrals on a sphere becomes integrals on a disk.

$$y_3^2 = (ct)^2 - r^2$$