Consider the Laplace equation \(\Delta u = 0 \) in \(\Omega \), where the open set \(\Omega \) is the intersection of the unit disk with the first quadrant of the plane \(\mathbb{R}^2 \). Assume that the Dirichlet boundary condition \(u = 0 \) on the positive \(x \)-axis is given, and the Neumann boundary condition \(u_x = g(y) \in C^\infty([0,1]) \) on the positive \(y \)-axis. Assume that \(u \) is \(C^\infty \) on the unit arc. Show that

\[
u(r, \theta) = r(\ln r \sin \theta + \theta \cos \theta)\]

is a solution to this problem in polar coordinates. Show that the solution is not \(C^1 \) at the corner.