MATH 412 Fourier Series and PDE- Spring 2010

SOLUTIONS to HOMEWORK 3

Problem 1.

(a): Find a general solution of the equation

\[u_{tt} + 3u_{xt} - 3u_{xx} = 0. \]

(b): Find a solution of the Cauchy problem,

\[u_{tt} + 3u_{xt} - 4u_{xx} = 0 \quad (x, t) \in \mathbb{R} \times (0, \infty) \]

\[u(x, 0) = \phi(x) \quad x \in \mathbb{R} \]

\[u_t(x, 0) = \psi(x) \quad x \in \mathbb{R}. \]

Solution: (b) The discriminant of the equation is positive since \(\det \begin{bmatrix} 3/2 & 1 \\ -4 & 3/2 \end{bmatrix} = 9/4 + 4 = 25/4 > 0 \), hence the equation is hyperbolic. Solve \(\mu_1^2 + 3\mu - 4 = 0 \) to get two real solutions, \(\mu_1 = -4 \) and \(\mu_2 = 1 \). There are two characteristic equations

\[\frac{dx}{dt} = 4 \quad \text{and} \quad \frac{dx}{dt} = -1 \]

whose solutions are

\[x - 4t = C_1 \quad \text{and} \quad x + t = C + 2. \]

Define the change of coordinates by \(\xi = x - 4t \) and \(\eta = x + t \). Then

\[\xi_x = 1, \quad \xi_t = -4, \quad \eta_x = 1, \quad \eta_t = 1. \]

Setting \(u(x, t) = v(\xi, \eta) = v(x - 4t, x + t) \), one finds that

\[
\begin{align*}
 u_x &= v_\xi + v_\eta \\
 u_t &= -4v_\xi + v_\eta \\
 u_{xx} &= v_{\xi\xi} + 2v_{\xi\eta} + v_{\eta\eta} \\
 u_{xt} &= -4v_{\xi\xi} + 2v_{\xi\eta} + v_{\eta\eta} \\
 u_{tt} &= 16v_{\xi\xi} - 3v_{\xi\eta} + v_{\eta\eta}.
\end{align*}
\]

Substituting into the equation,

\[
0 = u_{tt} + 3u_{xt} - 4u_{xx} = (16v_{\xi\xi} - 3v_{\xi\eta} + v_{\eta\eta}) + 3(4v_{\xi\xi} + 2v_{\xi\eta} + v_{\eta\eta}) - 4(v_{\xi\xi} + 2v_{\xi\eta} + v_{\eta\eta})
\]

\[= -5v_{\xi\eta}. \]

The general solution of the equation \(v_{\xi\eta} = 0 \) is equal to

\[v(\xi, \eta) = F(\xi) + G(\eta) \]

for any two twice continuously differentiable functions \(F \) and \(G \). Hence, the solution \(u \) is equal to

\[u(x, t) = F(x - 4t) + G(x + t) \]
where F and G are as above. The derivative $u_t(x, t)$ is equal to $u_t(x, t) = -4F'(x - 4t) + G'(x + t)$. Hence the initial conditions give

\[
F(x) + G(x) = \phi(x) \\
-4F'(x) + G'(x) = \psi.
\]

Integrating the second equation one gets

\[
-4F(x) + G(x) = \int_0^x \psi(y) \, dy + C
\]

where $C = -4F(0) + G(0)$. So we have a system of equations for F and G

\[
F(x) + G(x) = \phi(x) \\
-4F(x) + G(x) = \int_0^x \psi(y) \, dy + C.
\]

Subtracting the second equation from the first and dividing by 5 gives

\[
F(x) = \frac{1}{5} \phi(x) - \frac{1}{5} \int_0^x \psi(y) \, dy - \frac{C}{5}.
\]

Multiplying the first equation by 4, adding to the second and dividing by 5 gives,

\[
G(x) = \frac{1}{5} \phi(x) + \frac{1}{5} \int_0^x \psi(y) \, dy + \frac{C}{5}.
\]

Consequently,

\[
u(x, t) = F(x - 4t) + G(x + t) = \frac{\phi(x - 4t) + \phi(x + t)}{5} + \frac{1}{5} \int_{x - 4t}^{x + t} \psi(y) \, dy.
\]

Problem 2. Solve the following Cauchy problem:

\[
\begin{aligned}
&u_{tt} - 4u_{xx} = e^x + \sin t & (x, t) \in \mathbb{R} \times (0, \infty) \\
u(x, 0) = 0 & x \in \mathbb{R} \\
u_t(x, 0) = \frac{1}{1 + x^2} & x \in \mathbb{R}
\end{aligned}
\]

Solution: The solution u of is given by

\[
u(x, t) = \frac{\phi(x + 2t) + \phi(x - 2t)}{2} + \frac{1}{4} \int_{x - 2t}^{x + 2t} \psi(y) \, dy + \frac{1}{4} \int_0^t \left(\int_{x - 2(t-s)}^{x+2(t-s)} f(y, s) \, dy \right) ds
\]

where $\phi = 0$, $\psi = \frac{1}{1 + y^2}$, and $f(y, s) = e^y + \sin s$. So,

\[
u(x, t) = \frac{1}{4} \int_{x - 2t}^{x + 2t} \frac{1}{1 + y^2} \, dy + \frac{1}{4} \int_0^t \left(\int_{x - 2(t-s)}^{x+2(t-s)} e^y + \sin s \, dy \right) ds.
\]

The first integral is equal to

\[
\frac{1}{4} \int_{x - 2t}^{x + 2t} \frac{1}{1 + y^2} \, dy = \frac{1}{4} \tan^{-1} y \bigg|_{x - 2t}^{x + 2t} = \tan^{-1}(x + 2t) - \tan^{-1}(x - 2t)
\]
The second integral is equal to
\[
\frac{1}{4} \int_0^t \left(\int_{x-2(t-s)}^{x+2(t-s)} e^y + \sin s \, dy \right) \, ds
\]
\[
= \frac{1}{4} \int_0^t \left(4(t-s) \sin s \, ds + \left(e^{x+2(t-s)} - e^{x-2(t-s)} \right) \right) \, ds
\]
\[
= t - \sin t + \frac{e^x}{4} \left(e^{2t} + e^{-2t} - e^t - e^{-t} \right).
\]
So the solution is equal to
\[
u(x) = \frac{\tan^{-1}(x + 2t) - \tan^{-1}(x - 2t)}{4} + t - \sin t + \frac{e^x}{4} \left(e^{2t} + e^{-2t} - e^t - e^{-t} \right).
\]

Problem 3.

(a): Solve the following initial value problem:
\[
\begin{align*}
 u_{tt} - u_{xx} &= 0 & (x, t) & \in (0, \infty) \times (0, \infty) \\
 u_x(0, t) &= 0 & t & \in (0, \infty) \\
 u(x, 0) &= \phi(x) & x & \in [0, \infty) \\
 u_t(x, 0) &= \psi(x) & x & \in [0, \infty)
\end{align*}
\]

where \(\phi \) and \(\psi \) are \(C^1 \) functions on \([0, \infty)\) satisfying \(\phi'(0) = \psi'(0) = 0 \).

Hint: Extend \(\phi \) and \(\psi \) as even functions \(\tilde{\phi} \) and \(\tilde{\psi} \) on \(\mathbb{R} \). Solve the Cauchy problem with \(\tilde{\phi} \) and \(\tilde{\psi} \) as initial data and show that the restriction the solution to \((0, \infty) \times (0, \infty)\) is a solution of the above problem.

(b): Solve the problem with \(\phi(x) = x^3 + x^6 \) and \(\psi(x) = \sin^3 x \).

Solution: Define
\[
\tilde{\phi}(x) = \begin{cases}
 \phi(x) & x \geq 0 \\
 \phi(-x) & x \leq 0
\end{cases}
\quad \text{and} \quad
\tilde{\psi}(x) = \begin{cases}
 \psi(x) & x \geq 0 \\
 \psi(-x) & x \leq 0
\end{cases}
\]

Then \(\phi \) and \(\psi \) are even functions on \(\mathbb{R} \). Let \(\tilde{u} \) be the solution of
\[
\begin{align*}
 \tilde{u}_{tt} - \tilde{u}_{xx} &= 0 & (x, t) & \in \mathbb{R} \times (0, \infty) \\
 \tilde{u}(x, 0) &= \tilde{\phi}(x) & x & \in \mathbb{R} \\
 \tilde{u}_t(x, 0) &= \tilde{\psi}(x) & x & \in \mathbb{R}.
\end{align*}
\]

Set \(u(x, t) = \tilde{u}(x, t) \). Since \(\tilde{u} \) solves the equation at points \((x, t)\) with \(x > 0 \), the function \(u \) satisfies \(u_{tt} - u_{xx} = 0 \) on \(\mathbb{R} \times (0, \infty) \). Moreover, for \(x > 0 \), \(u(x, 0) = \tilde{u}(x, 0) = \tilde{\phi}(x) = \phi(x) \) (by definition of \(\tilde{\phi} \) and \(u_t(x, 0) = \tilde{u}_t(x, 0) = \tilde{\psi}(x) = \psi(x) \) (by definition of \(\tilde{\psi} \)). It remains to show that \(u_t(0, t) = 0 \). It suffices to show that \(\tilde{u}(x, t) \) is even with respect to \(x \) since the derivative of an even function is odd so that \(0 = \tilde{u}_t(x, 0) = u_t(x, 0) \). To see this set \(v(x, t) = \tilde{u}(-x, t) \). Then
\[
v_{tt} - v_{xx} = u_{tt} - \tilde{u}_t - \tilde{u}_{xx} = 0
\]
and \(v(x, 0) = \tilde{u}(-x, 0) = \tilde{\phi}(-x) = \phi(x) \) and \(v_t(x, 0) = \tilde{u}_t(-x, 0) = \tilde{\psi}(-x) = \psi(x) \). So \(v \) is a solution of the initial value problem and since \(\tilde{u} \) is another solution of the initial value problem, we have that \(v = \tilde{u} \), that is \(\tilde{u}(-x, t) = \tilde{u}(x, t) \).
(b) With the notation as above the solution \(u \) of the initial value problem is equal to

\[
u(x,t) = \frac{1}{2}[\tilde{\phi}(x+t) + \tilde{\phi}(x-t)] + \frac{1}{2} \int_{x-t}^{x+t} \tilde{\psi}(y) \, dy.
\]

To express this solution in terms of \(\phi \) and \(\psi \), one needs to consider to cases.

Case 1 The point \((x,t) \in (0, \infty) \times (0, \infty)\) satisfies \(x-t \geq 0\). Then \(\tilde{\phi}(x+t) = \phi(x+t)\), \(\tilde{\phi}(x-t) = \phi(x-t)\) and \(\tilde{\psi}(y) = \psi(y)\) for \(y \geq 0\). So, in this case,

\[
u(x,t) = \frac{1}{2}[\phi(x+t) + \phi(x-t)] + \frac{1}{2} \int_{x-t}^{x+t} \psi(y) \, dy.
\]

Case 2 The point \((x,t) \in (0, \infty) \times (0, \infty)\) satisfies \(x-t < 0\). In this case,

\[
u(x,t) = \frac{1}{2}[\tilde{\phi}(x+t) + \tilde{\phi}(x-t)] + \frac{1}{2} \int_{x-t}^{x+t} \tilde{\psi}(y) \, dy
\]

\[
= \frac{1}{2}[\tilde{\phi}(x+t) + \tilde{\phi}(t-x)] + \frac{1}{2} \int_{x-t}^{0} \tilde{\psi}(y) \, dy + \frac{1}{2} \int_{0}^{x+t} \tilde{\psi}(y) \, dy
\]

\[
= \frac{1}{2}[\phi(x+t) + \phi(t-x)] + \frac{1}{2} \int_{0}^{t-x} \psi(y) \, dy + \frac{1}{2} \int_{0}^{x+t} \psi(y) \, dy
\]

where we have used that \(\tilde{\phi}\) and \(\tilde{\psi}\) are even and that on \((0, \infty)\) they are equal to \(\phi\) and \(\psi\), respectively.