Problem 1. Let d_1 and d_2 be metrics on X. Show that $\sqrt{d_1}$, $d_1 + d_2$, $\max\{d_1, d_2\}$ are also metrics. Are the functions $\min\{d_1, d_2\}$, d_1d_2 metrics on X?

Problem 2. Let (X, d) be a metric space. Show that the function

$$D(x, y) = f(d(x, y)) \quad x, y \in X$$

defines a metric if f satisfies the following conditions:

(a) $f(0) = 0$;

(b) f is an increasing function;

(c) $f(x + y) \leq f(x) + f(y)$.

Problem 3. Let X be a vector space, and let d be a metric on X satisfying $d(x, y) = d(x - y, 0)$ and $d(\alpha x, \alpha y) = |\alpha| d(x, y)$ for every $x, y \in X$ and every $\alpha \in \mathbb{R}$. Show that $\|x\| = d(x, 0)$ defines a norm on X. Give an example of a metric on a vector space X which is not associated with a norm in this way.

Problem 4. Let (X, d) be a metric space.

(a) Show that $|d(x, z) - d(y, z)| \leq d(x, y)$ for all $x, y, z \in X$. Use this inequality to show that if a sequence (x_n) converges to x, then the sequence $(d(x_n, y))$ converges to $d(x, y)$ for every $y \in X$.

(b) Show that $|d(x, z) - d(y, u)| \leq d(x, y) + d(z, u)$ for all $x, y, z, u \in X$. Use this inequality to show that if sequences (x_n) and (y_n) converge to x and y, respectively, the sequence $(d(x_n, y_n))$ converges to $d(x, y)$.

Problem 5. Let (X, d_X) and (Y, d_Y) be two metric space and let $Z = X \times Y$ be the product metric space with the metric

$$D((x_1, y_1), (x_2, y_2)) = d_X(x_1, x_2) + d_Y(y_1, y_2).$$

(a) Show that a sequence $(z_n) = ((x_n, y_n))$ converges in (Z, D) if and only if (x_n) converges in (X, d_X) and (y_n) converges in (Y, d_Y).

(b) Show that a sequence $(z_n) = ((x_n, y_n))$ is Cauchy in (Z, D) if and only if (x_n) is Cauchy in (X, d_X) and (y_n) is Cauchy in (Y, d_Y).

Problem 6. Assume that (a_n) is a Cauchy sequence of real numbers and that $k \geq 2$. Show that also (a_n^k) is Cauchy.

Problem 7. Let (a_n) and (b_n) be sequences such that $|a_n + 1 - a_n| \leq b_n$ for all n and the series (b_n) converges. Show that (a_n) is Cauchy and hence it converges.

Problem 8. Let $I = [1, 3/2]$ and let $f : I \to \mathbb{R}$ be defined by $f(x) = -x^2/2 + x + 1$.
(a) Show that \(f \) is strictly decreasing (i.e., \(f(x) > f(y) \) whenever \(x < y \)) and that \(f(I) \subset I \).

(b) Show that \(|f(x) - f(y)| \leq \frac{1}{2} |x - y| \) for all \(x, y \in I \).

(c) Let \(x_0 = 1 \) and \(x_{n+1} = f(x_n) \) for all \(n \geq 0 \). Use (b) to show that the sequence \((x_n) \) is a Cauchy and that \(\lim x_n = \sqrt{2} \).

Problem 9. Assume that \(0 < a < b \) and \(x_0 = a, y_0 = b \), and

\[x_{n+1} = \sqrt{x_n y_n}, \quad y_{n+1} = \frac{1}{2} (x_n + y_n), \quad n \geq 0. \]

Show that the sequence \((x_n) \) is increasing, that \((y_n) \) is decreasing, and that both converge to the same limit (you don’t have to find the limit).

Problem 10. Discuss the convergence or divergence of the following series:

(a) \(\sum \left(\frac{\sqrt{n+1} - \sqrt{n}}{n} \right) \)

(b) \(\sum \frac{1}{(\ln n)^p} \)

(c) \(\sum \frac{1}{n(\ln n)^p} \)

(d) \(\sum \frac{1}{(\ln n)^m} \)

(e) \(\sum (-1)^{n+1} \frac{\ln n}{n} \)

(f) \(\sum n^{1/n} a_n \) where \(\sum a_n \) is a convergent series.

(g) \(\sum a_n e^{-nx} \) where \(x > 0 \) and the partial sums of the series \(\sum a_n \) are bounded.