Submit solutions to all of the problems. Each problem is worth the same number of points. Collaboration is allowed, but you need to turn in individually written solutions.

Problem 1. Let \(f : (X, d) \to (Y, \rho) \). Show that the following are equivalent:

(a) \(f \) is continuous.

(b) \(f(A) \subset f(A) \) for every \(A \subset X \).

(c) \(f^{-1}(B^\circ) \subset (f^{-1}(B))^\circ \) for every \(B \subset Y \).

Problem 2.

(a) Let \(\{x_n\} \) and \(\{y_n\} \) be sequences in a metric space \((X, d)\). Assume that \(\{x_n\} \) is Cauchy and that \(d(x_n, y_n) \to 0 \). Show that \(\{y_n\} \) is Cauchy in \((X, d)\).

(b) A subset \(D \) of \(X \) is called dense if \(D = X \). Suppose that every Cauchy sequence of points in \(D \) converges to some point of \(X \). Show that \((X, d) \) is complete.

Problem 3.

(a) Consider \(\mathbb{R} \) with the metric
\[
\rho(x, y) = |\arctan x - \arctan y|.
\]
Is \((\mathbb{R}, \tau)\) a complete metric space?

(b) Consider \(\mathbb{R} \) with the metric
\[
\tau(x, y) = |x^3 - y^3|, \quad x, y \in \mathbb{R}.
\]
Is \((\mathbb{R}, \tau)\) a complete metric space?

Problem 4.

(a) Let \((X, \|\cdot\|)\) be a normed space and let \((x_n)\) be a sequence in \(X \) satisfying
\[
\sum_{n=1}^{\infty} \|x_n\| < \infty.
\]
Show that \((x_n)\) is a Cauchy sequence.

(b) Let \((X, \|\cdot\|)\) be a normed space. Show that \((X, \|\cdot\|)\) is complete if and only if \(\overline{B}_1(0) = \{x \in X \mid \|x\| \leq 1\} \) is complete.

(c) Let \(S \) be the vector space of all real sequences \(x = (x_n) \) such that \(x_n = 0 \) for all but finitely many \(n \). Show that \(S \) is not complete with respect to the norm \(\|x\| = \sup_n |x_n| \).