Review Problems

Problem 1. Show that
\[\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } 2 - \epsilon < \frac{2n + 1}{n + 2} < 2 + \epsilon, \text{ for } n \geq N. \]

Problem 2. Prove by induction that \(n^3 + 5n \) is divisible by 6 for all \(n \in \mathbb{N} \).

Problem 3. The Fibonacci numbers from a sequence \(\{F_n\} \) defined by \(F_1 = F_2 = 1 \) and \(F_{n+2} = F_{n+1} + F_n \). Show that
\[F_n = \frac{(1 + \sqrt{5})^n - (1 - \sqrt{5})^n}{2^n \sqrt{5}}, \quad \forall n \in \mathbb{N}. \]

Problem 4. Let \(S \) and \(T \) be two nonempty bounded subsets of \(\mathbb{R} \) with \(S \subset T \). Prove that
\[\inf(T) \leq \inf(S) \leq \sup(S) \leq \sup(T). \]

Problem 5. Let \(y \) be a nonnegative real number. Prove that there exists a real number \(x \) such that \(x^2 = y \). (Hint: find a subset \(S \) of \(\mathbb{R} \) such that \((\sup S)^2 = y \).)

Problem 6. Prove that
\[\frac{|x + y|}{1 + |x + y|} \leq \frac{|x|}{1 + |x|} + \frac{|y|}{1 + |y|}, \quad \forall x, y \in \mathbb{R}. \]
(Hint: consider the cases \(xy \geq 0 \) and \(xy < 0 \) separately.)

Problem 7. Prove that if a sequence \(\{x_n\} \) converges to a real number \(l \), then the sequence \(\{|x_n|\} \) converges to \(|l| \). Is the converse true?

Problem 8. Let \(\{x_n\} \) and \(\{y_n\} \) be two sequences of real numbers such that \(x_n \leq y_n \) \((\forall n \in \mathbb{N}) \), \(\{x_n\} \) is increasing, and \(\{y_n\} \) is decreasing. Prove that \(\{x_n\} \) and \(\{y_n\} \) are convergent and that \(\lim_{n \to \infty} x_n \leq \lim_{n \to \infty} y_n \).

Problem 9. Is the sequence \(\{x_n\} \) given by
\[x_n = \frac{n^2}{\sqrt{n^6 + 1}} + \frac{n^2}{\sqrt{n^6 + 2}} + \cdots + \frac{n^2}{\sqrt{n^6 + n}} \]
convergent or divergent?

Problem 10. Let \(\{x_n\} \) be a sequence of real numbers with \(x_n \neq 0 \) \((\forall n \in \mathbb{N}) \). Assume that
\[\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = l. \]
(a) Prove that, if \(|l| < 1 \), then \(\lim_{n \to \infty} x_n = 0 \).
(b) Prove that, if \(|l| > 1 \), then the sequence \(\{x_n\} \) diverges.

Problem 11. Consider the sequence \(x_n = n^{1/n} - 1 \).
(a) Using the binomial expansion of \((1 + x_n)^n \), prove that \(0 \leq x_n \leq \frac{\sqrt{5}}{n-1} \) for \(n \geq 2 \).
(b) Prove that \(\lim_{n \to \infty} n^{\frac{1}{n}} = 1 \). (Hint: find \(\lim_{n \to \infty} x_n \).

Problem 12.

(a) Find a (nonempty) subset \(S \) of \(\mathbb{Q} \) which is bounded above but does not have a least upper bound in \(\mathbb{Q} \). Justify.

(b) Since \(\emptyset \neq S \subset \mathbb{R} \), your set \(S \) must have a least upper bound in \(\mathbb{R} \). Find it.

(c) Prove that \(T = \{ t \in \mathbb{R} : t \geq s, \forall s \in S \} \) is an interval of \(\mathbb{R} \) unbounded above.

(d) Does \(T \) have a minimum? Why?

Problem 13. Assuming \(x \geq 1 \), prove that

\[
\left(\frac{2 \sqrt{x} - 1}{x^2} \right)^n = \left(1 - \left(1 - \frac{1}{\sqrt{x}} \right)^2 \right)^n
\]

\[
\left(\frac{2 \sqrt{x} - 1}{x^2} \right)^n \leq 1
\]

and, using Bernoulli’s inequality

\[
1 + ny \leq (1 + y)^n, \quad \text{for } y \geq -1 \text{ and } n \in \mathbb{N},
\]

show that

\[
1 - n \left(1 - \frac{1}{\sqrt{x}} \right)^2 \leq \left(1 - \left(1 - \frac{1}{\sqrt{x}} \right)^2 \right)^n \]

\[
n(\sqrt{x} - 1) \leq x - 1.
\]

Then, using (1), (3) and (4), prove that

\[
\left(\frac{2 \sqrt{x} - 1}{x^2} \right)^n \geq 1 - \frac{(x - 1)^2}{n \sqrt{x}^2}.
\]

Finally, deduce from (2) and (5) that

\[
\lim_{n \to \infty} (2 \sqrt{x} - 1)^n = x^2.
\]

Problem 14.

(a) Prove that

\[
0 \leq e^x - 1 \leq 2x, \quad \forall x \in [0, 1].
\]

Hint: if \(x \in [0, 1] \), then \(0 \leq \sum_{k=2}^{\infty} \frac{x^{k-1}}{k!} \leq \sum_{k=2}^{\infty} \frac{1}{k!} \leq e - 2 \leq 1.\)

(b) Deduce that

\[
0 \leq \sqrt[n]{n} - 1 \leq 2 \frac{\ln(n)}{n}, \quad \forall n \in \mathbb{N}.
\]

(c) Prove that

\[
\lim_{n \to \infty} n(\sqrt[n]{n} - 1)^2 = 0.
\]

Hint: \(\lim_{y \to \infty} \frac{(\ln y)^2}{y} = \lim_{x \to \infty} \frac{x^2}{e^x} \)

(d) Prove that

\[
\lim_{n \to \infty} \frac{(2 \sqrt[n]{n} - 1)^n}{n^2} = 1.
\]
Hint: we know from Problem 13 that
\[1 - n \left(1 - \frac{1}{\sqrt{n}} \right)^2 \leq \frac{(2\sqrt{n} - 1)^n}{n^2} \leq 1, \quad \forall n \in \mathbb{N}. \]

Problem 15. Let \(\alpha \) be a positive real number larger than 1. Prove that the sequence \(\{x_n\} \) defined by \(x_1 = 1 \) and
\[x_{n+1} = \frac{1}{2} \left(x_n + \frac{\alpha}{x_n} \right) \]
is convergent and find its limit.

Problem 16.
(a) Does the series \(\sum_{n=1}^{\infty} \left(-1 \right)^n \sqrt{n} \) converge or diverge.
(b) Does the series \(\sum_{n=2}^{\infty} \frac{(-1)^n}{\sqrt{n} + (-1)^n} \) converge or diverge.

Problem 17. Is the series
\[\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots (2n - 1)}{2 \cdot 4 \cdot 6 \cdots (2n)} \]
convergent or divergent?

Problem 18.
(a) State the comparison test for series of real numbers.
(b) Prove that the harmonic series \(\sum_{n=1}^{\infty} \frac{1}{n} \) diverges.
(c) Prove that the series \(\sum_{n=1}^{\infty} \frac{2013}{3\sqrt{n}} \) diverges.

Problem 19. Write down explicitly what it means for a sequence \(\{a_n\} \) to be bounded.

Problem 20. Prove that a convergent sequence \(\{a_n\}_{n=1}^{\infty} \) of real numbers is necessarily bounded.

Problem 21. Write down explicitly what it means for a sequence \(\{a_n\} \) to converge to a real number \(l \).

Problem 22. Let \(\{a_n\} \) and \(\{b_n\} \) be two convergent sequences. Prove that, if \(a_n \leq b_n \) for all \(n \in \mathbb{N} \), then \(\lim_{n \to \infty} a_n \leq \lim_{n \to \infty} b_n \).

Problem 23. Write down explicitly what it means for a sequence \(\{a_n\} \) of real numbers to tend to \(\infty \).

Problem 24. Prove that if a sequence \(\{a_n\}_{n=1}^{\infty} \) of real numbers tends to \(\infty \) then so does any subsequence \(\{a_{n_k}\}_{k=1}^{\infty} \).

Problem 25. Prove that, if a \(\{a_{n_k}\}_{k=1}^{\infty} \) is a subsequence of an increasing sequence of real numbers \(\{a_n\}_{n=1}^{\infty} \), then \(\{a_{n_k}\}_{k=1}^{\infty} \) is itself an increasing sequence.

Problem 26. Prove that
\[\sum_{k=0}^{n} q^k = \frac{q^{n+1} - 1}{q - 1} \quad \text{if } q \neq 1. \]
Problem 27. For which values of the real numbers \(a \) and \(r \) is the geometric series \(\sum_{k=0}^{\infty} ar^k \) convergent? Justify your answer.

Problem 28. (a) Give a complete statement of the Monotone Convergence Theorem for a sequence of real numbers.

(b) Give a complete statement of the Bolzano–Weierstrass Theorem.

Problem 29. (a) Let \(\{a_n\} \) be a sequence of real numbers. Prove that, if the series \(\sum_{n=1}^{\infty} a_n \) converges, the sequence \(\{a_n\} \) must converge to 0.

(b) Find a null sequence \(\{b_n\} \) such that \(\sum_{n=1}^{\infty} b_n \) diverges.

Problem 30. Let \(s_n \) denote the sum of the first \(n \) terms of the series of real numbers \(a_1 + a_2 + a_3 + a_4 + a_5 + \cdots \). If the sequence \(\{s_n\}_{n=1}^{\infty} \) is increasing and bounded below, what can one say about the convergence behavior of the series \(\sum_{n=1}^{\infty} a_n \)?