Alexandrov meets Lott–Villani–Sturm

Anton Petrunin

Abstract

Here I show compatibility of two definition of generalized curvature bounds — the lower bound for sectional curvature in the sense of Alexandrov and lower bound for Ricci curvature in the sense of Lott–Villani–Sturm.

Introduction

Let me denote by $\text{CD}[m, \kappa]$ the class of metric-measure spaces which satisfy a weak curvature-dimension condition for dimension m and curvature κ (see preliminaries). By $\text{Alex}^m[\kappa]$, I will denote the class of all m-dimensional Alexandrov spaces with curvature $\geq \kappa$ equipped with the volume-measure (so $\text{Alex}^m[\kappa]$ is a class of metric-measure spaces).

Main theorem. $\text{Alex}^m[0] \subset \text{CD}[m, 0]$.

The question appears first in [Lott–Villani, 7.48]. In [Villani], it is formulated more generally: $\text{Alex}^m[\kappa] \subset \text{CD}[m, (m-1)\kappa]$. The later statement can be proved, along the same lines, but I do not write it down.

About the proof. The idea of the proof is the same as in the Riemannian case (see [CMS, 6.2] or [Lott–Villani, 7.3]). One only needs to extend certain calculus to Alexandrov spaces. To do this, I use the same technique as in [Petrunin 03]. I will illustrate the idea on a very simple problem.

Let M be a 2-dimensional non-negatively curved Riemannian manifold and $\gamma_\tau: [0, 1] \to M$ be a continuous family of unit-speed geodesics such that

$$|\gamma_\tau(t_0) \gamma_\tau(t_1)| \geq |t_1 - t_0|.$$

Set $\ell(t)$ to be the total length of curve $\sigma_t: \tau \mapsto \gamma_\tau(t)$. Then $\ell(t)$ is a concave function — that is easy to prove.

Now, assume you have $A \in \text{Alex}^2[0]$ instead of M and a non-continuous family of unit-speed geodesics $\gamma_\tau(t)$ which satisfies ①. Define $\ell(t)$ as the 1-dimensional Hausdorff measure of image of σ_t. Then ℓ is also concave.

Here is an idea how one can proceed; it is not the simplest one but the one which admits a proper generalization. Consider two functions $\psi = \text{dist}_{\text{im} \sigma_0}$ and $\varphi = \text{dist}_{\text{im} \sigma_1}$. Note that geodesics $\gamma_\tau(t)$ are also gradient curves of ψ and φ. This implies that $\Delta \varphi + \Delta \psi$ vanishes almost everywhere on the image of the map $(\tau, t) \to \gamma_\tau(t)$ (the Laplasians $\Delta \varphi$ and $\Delta \psi$ are Radon sign-measures). Then the result follows from the second variation formula from [Petrunin 98] and calculus on Alexandrov spaces developed in [Perelman].
Remark. Although CD\([m, \kappa]\) is a very natural class of metric-measure spaces, some basic tools in Ricci comparison can not work there in principle. For instance, there are CD\([m, 0]\)-spaces which do not satisfy the Abresch–Gromoll inequality, (see [AG]). Thus, one has to modify the definition of the class CD\([m, \kappa]\) to make it suitable for substantial applications in Riemannian geometry.

I’m grateful to A. Lytchak and C. Villani, for their help.

1 Preliminaries

Prerequisite. The reader is expected to be familiar with basic definitions and notions of optimal transport theory as in [Villani], measure theory on Alexandrov spaces from [BGP], DC-structure on Alexandrov’s spaces from [Perelman] and technique and notations of gradient flow as in [Petrunin 07].

What needs to be proved. Let me recall the definition of class CD\([m, 0]\) only — it is sufficient for understanding this paper. The definition of CD\([m, \kappa]\) can be found in [Villani, 29.8].

Similar definitions were given in [Lott–Villani] and [Sturm]. The idea behind these definitions — convexity of certain functionals in the Wasserstein space over a Riemannian manifold, appears in [Otto–Villani], [CMS], [Sturm–v. Renesse]. In the Euclidean context, this notion of convexity goes back to [McCann]. More on the history of the subject can be found in [Villani].

For a metric-measure space \(X\), I will denote by \(|xy|\) the distance between points \(x, y\in X\) and by \(\text{vol} E\) the distinguished measure of Borel subset \(E \subset X\) (I will call it volume). Let us denote by \(P^2 X\) the set of all probability measures with compact support in \(X\) equipped with Wasserstein distance of order 2, see [Villani, 6.1].

Further, we assume \(X\) is a proper geodesic space; in this case \(P^2 X\) is geodesic.

Let \(\mu\) be a probability measure on \(X\). Denote by \(\mu^r\) the absolutely continuous part of \(\mu\) with respect to volume. I.e. \(\mu^r\) coincides with \(\mu\) outside a Borel subset of volume zero and there is a Borel function \(\rho: X \to \mathbb{R}\) such that \(\mu^r = \rho \cdot \text{vol}\).

Define

\[
U_{m, \mu} \overset{\text{def}}{=} \int_X \rho^{1 - \frac{m}{2}} \cdot d\text{vol} = \int_X \frac{1}{\sqrt{\rho}} \cdot d\mu^r.
\]

Then \(X \in \text{CD}[m, 0]\) if the functional \(U_m\) is concave on \(P^2 X\); i.e for any two measures \(\mu_0, \mu_1 \in P^2 X\), there is a Borel function \(\rho: X \to \mathbb{R}\) such that \(\mu^r = \rho \cdot \text{vol}\).

1 Calculus in Alexandrov spaces. Let \(A \in \text{Alex}^m[k]\) and \(S \subset A\) be the subset of singular points; i.e. \(x \in S\) iff its tangent space \(T_x\) is not isometric to Euclidean \(m\)-space \(\mathbb{E}^m\). The set \(S\) has zero volume ([BGP, 10.6]). The set of regular points \(A \setminus S\) is convex ([Petrunin 98]); i.e. any geodesic connecting two regular points consists only of regular points.

According to [Perelman], if \(f: A \to \mathbb{R}\) is a semiconcave function and \(\Omega \subset A\) is an image of a DC_0-chart, then \(\partial_k f\) and components of metric tensor \(g^{ij}\) are functions of locally bounded variation which are continuous in \(\Omega \setminus S\).

Further, for almost all \(x \in A\) the Hessian of \(f\) is well defined. I.e. there is a subset of full measure \(\text{Reg} f \subset A \setminus S\) such that for any \(p \in \text{Reg} f\) there is a
bi-linear form\(^1\) Hess\(_p\) \(f\) on \(T_p\) such that
\[
f(q) = f(p) + d_p f(v) + \text{Hess}_p f(v, v) + o(|v|^2),
\]
where \(v = \log_p q\). Moreover, the Hessian can be found using standard calculus in the DC\(_0\)-chart. In particular,
\[
\text{Trace Hess } f \overset{\text{\(\sim\)}}{=} \frac{\partial_i (\det g \cdot g^{ij} \cdot \partial_j f)}{\det g}
\]

The following is an extract from the second variation formula [Petrunin 98, 1.1B] reformulated with formalism of ultrafilters. Let \(\omega\) be a nonprincipal ultrafilter on natural numbers, \(A \in \text{Alex}^m[0]\) and \([pq]\) be a minimizing geodesic in \(A\) which is extendable beyond \(p\) and \(q\). Assume further that one of (and therefore each) of the points \(p\) and \(q\) is regular. Then there is a model configuration \(\tilde{p}, \tilde{q} \in E^m\) and isometries \(t_p : T_p A \to T_{\tilde{p}} E^m, t_q : T_q A \to T_{\tilde{q}} E^m\) such that
\[
|\exp_{\tilde{p}}(\frac{1}{n} v) \exp_{\tilde{q}}(\frac{1}{n} w)| \leq |\exp_{\tilde{p}} \circ t_p(\frac{1}{n} v) \exp_{\tilde{q}} \circ t_q(\frac{1}{n} w)| + o(n^2)
\]
for \(\omega\)-almost all \(n\) (once the left-hand side is well defined).

If \(\tilde{\tau} : T_{\tilde{p}} \to T_{\tilde{q}}\) is the parallel translation in \(E^m\), then the isometry \(\tau : T_p \to T_q\) which satisfy identity \(t_q \circ \tau = \tilde{\tau} \circ t_p\) will be called the “parallel transportation” from \(p\) to \(q\).

Laplacians of semiconcave functions.

Here are some facts from [Petrunin 03].

Given a function \(f : A \to \mathbb{R}\), define its Laplacian \(\Delta f\) to be a Radon sign-measure which satisfies the following identity
\[
\int_A u \cdot d\Delta f = -\int_A \langle \nabla u, \nabla f \rangle \cdot d\text{vol}
\]
for any Lipschitz function \(u : A \to \mathbb{R}\).

1.1. Claim

Let \(A \in \text{Alex}^m[\kappa]\) and \(f : A \to \mathbb{R}\) be \(\lambda\)-concave Lipschitz function. Then Laplacian \(\Delta f\) is well defined and
\[
\Delta f \leq m \lambda \text{vol}.
\]
In particular, \(\Delta^s f\) — the singular part \(\Delta f\) is negative.

Moreover,
\[
\Delta f = \text{Trace Hess } f \cdot \text{vol} + \Delta^s f.
\]

Proof. Let us denote by \(F_t : A \to A\) the \(f\)-gradient flow for time \(t\).

Given a Lipschitz function \(u : A \to \mathbb{R}\), consider family \(u_t(x) = u \circ F_t(x)\). Clearly, \(u_0 \equiv u\) and \(u_t\) is Lipschitz for any \(t \geq 0\). Further, for any \(x \in A\) we have \(\|\frac{d}{dt} u_t(x)\|_{t=0} \leq \text{Const}\). Moreover
\[
\frac{d}{dt} u_t(x)\big|_{t=0} \overset{\text{\(\sim\)}}{=} d_x u(\nabla_x f) \overset{\text{\(\sim\)}}{=} \langle \nabla_x u, \nabla_x f \rangle.
\]

Further,
\[
\int_A u_t \cdot d\text{vol} = \int_A u \cdot d(F_t \# \text{vol}),
\]

\(^1\)Note that \(p \in A\setminus S\), thus \(T_p\) is isometric to Euclidean \(m\)-space.
where # stands for push-forward. Since $|F_t(x)F_t(y)| \leq e^{\lambda t} |xy|$ (see [Petrunin 07, 2.1.4(i)]), for any $x, y \in A$ we have

$$F_t\# \text{vol} \geq \exp(-m\lambda t) \cdot \text{vol}.$$

Therefore, for any non-negative Lipschitz function $u: A \to \mathbb{R}$,

$$\int_A u_t \cdot d\text{vol} = \int_A u \cdot d(F_t\# \text{vol}) \geq \exp(-m\lambda t) \int_A u \cdot d\text{vol}.$$

Therefore

$$\int_A (\nabla u, \nabla f) \cdot d\text{vol} = \frac{dt}{\lambda} \left| u_t \cdot d\text{vol} \right|_{t=0} \geq -m\lambda \cdot \int_A u \cdot d\text{vol}.$$

I.e. there is a Radon measure χ on A, such that

$$\int_A u \cdot d\chi = \int_A [(\nabla u, \nabla f) + m\lambda u] \cdot d\text{vol}.$$

Set $\Delta f = -\chi + m\lambda$, it is a Radon sign-measure and $\chi = -\Delta f + m\lambda \geq 0$.

To prove the second part of theorem, assume u is a non-negative Lipschitz function with support in a DC$_0$-chart $U \to A$, where $U \subset \mathbb{R}^m$ is an open subset. Then

$$\int_U (\nabla u, \nabla f) = \det g \cdot g^{ij} \cdot \partial_i u \cdot \partial_j f \cdot dx^1 \cdot dx^2 \cdot \cdots \cdot dx^m =$$

$$=-\int_U u \cdot \partial_t (\det g \cdot g^{ij} \cdot \partial_j f) \cdot dx^1 \cdot dx^2 \cdot \cdots \cdot dx^m,$$

Thus

$$\Delta f = \partial_t (\det g \cdot g^{ij} \cdot \partial_j f) \cdot dx^1 \cdot dx^2 \cdot \cdots \cdot dx^m \overset{\text{Trace Hess}}{=} \text{Trace Hess } f.$$

Gradient curves. Here I extend the notion of gradient curves to families of functions, see [Petrunin 07] for all necessary definitions.

Let I be an open real interval and $\lambda: I \to \mathbb{R}$ be a continuous function. A one parameter family of functions $f_t: A \to \mathbb{R}$, $t \in I$ will be called $\lambda(t)$-concave if the function $(t, x) \mapsto f_t(x)$ is locally Lipschitz and f_t is $\lambda(t)$-concave for each $t \in I$.

We will write $\alpha^\pm(t) = \nabla f_t$ if for any $t \in I$, the right/left tangent vector $\alpha^\pm(t)$ is well defined and $\alpha^\pm(t) = \nabla \alpha(t)f_t$. The solutions of $\alpha^+(t) = \nabla f_t$ will be also called f_t-gradient curves.

The following is a slight generalization of [Petrunin 07, 2.1.2&2.2(2)]; it can be proved along the same lines.

1.2. Proposition-definition. Let $A \in \text{Alex}^m(i]$, I be an open real interval, $\lambda: I \to \mathbb{R}$ be a continuous function and $f_t: A \to \mathbb{R}$, $t \in I$ be $\lambda(t)$-concave family.

Then for any $x \in A$ and $t_0 \in I$ there exists an f_t-gradient curve α which is defined in a neighborhood of t_0 and such that $\alpha(t_0) = x$.

Moreover, if $\alpha, \beta: I \to A$ are f_t-gradient then for any $t_0, t_1 \in I$, $t_0 \leq t_1$,

$$|\alpha(t_1)\beta(t_1)| \leq L.|\alpha(t_0)\beta(t_0)|,$$
where \(L = \exp \left(\int_{t_0}^{t_1} \lambda(t) \cdot dt \right) \).

Note that the above proposition implies that the value \(\alpha(t_0) \) of an \(f_t \)-gradient curve \(\alpha(t) \) uniquely determines it for all \(t \geq t_0 \) in \(I \). Thus we can define \(f_t \)-gradient flow — a family of maps \(F_{t_0,t_1} : A \to A \) such that

\[
F_{t_0,t_1}(\alpha(t_0)) = \alpha(t_1) \quad \text{if} \quad \alpha^+(t) = \nabla f_t.
\]

1.3. Claim. Let \(f_t : A \to \mathbb{R} \) be a \(\lambda(t) \)-concave family and \(F_{t_0,t_1} \) be \(f_t \)-gradient flow. Let \(E \subset A \) be a bounded Borel set. Fix \(t_1 \) and consider the function

\[
v(t) = \text{vol} F_{t_0,t_1}^{-1}(E). \]

Then

\[
v\big|_{t_1} = \int_{t_0}^{t_1} \Delta f_t \left[F_{t_0,t_1}^{-1}(E) \right] \cdot dt.
\]

Proof. Let \(u : A \to \mathbb{R} \) be a Lipschitz function with compact support. Set \(u_t = u \circ F_{t_0,t_1} \). Clearly all \((x,t) \mapsto u_t(x) \) is locally Lipschitz. Thus, the function

\[
w_u : t \mapsto \int_A u_t \cdot d\text{vol}
\]

is locally Lipschitz. Further

\[
w_u' (t) \overset{\text{def}}{=} - \int_A \langle \nabla u_t, \nabla f_t \rangle \cdot d\text{vol} = \int_A u_t \cdot d\Delta f_t.
\]

Therefore

\[
w_u|_{t_0}^{t_1} = \int_{t_0}^{t_1} \int_A u_t \cdot d\Delta f_t.
\]

The last formula extends to an arbitrary Borel function \(u : A \to \mathbb{R} \) with bounded support. Applying it to the characteristic function of \(E \) we get the result.

2 Games with Hamilton–Jacobi shifts.

Let \(A \in \text{Alex}^m[0] \). For a function \(f : A \to \mathbb{R} \cup \{+\infty\} \), let us define its Hamilton–Jacobi shift\footnote{There is a lot of similarity between the Hamilton–Jacobi shift of a function and an equidistant for a hypersurface.} \(\mathcal{H}_t f : A \to \mathbb{R} \) for time \(t > 0 \) as follows

\[
(\mathcal{H}_t f) (x) \overset{\text{def}}{=} \inf_{y \in A} \left\{ f(y) + \frac{1}{2t} |xy|^2 \right\}.
\]

We say that \(\mathcal{H}_t f \) is well defined if the above infimum is \(> -\infty \) everywhere in \(A \). Clearly,

\[
\mathcal{H}_{t_0+t_1} f = \mathcal{H}_{t_1} \mathcal{H}_{t_0} f,
\]

for any \(t_0, t_1 > 0 \).
Note that for \(t > 0 \), \(f_t = \mathcal{H}_t f \) forms a \(\frac{1}{t} \)-concave family, thus, we can apply 1.2 and 1.3. The next theorem gives a more delicate property of the gradient flow for such families; it is an analog of [Petrunin 07, 3.3.6].

2.1. Claim. Let \(A \in \text{Alex}^m[0], f_0: A \to \mathbb{R} \) be function and let \(f_t = \mathcal{H}_t f_0 \) be well defined for \(t \in (0, 1) \). Assume \(\gamma: [0, 1] \to A \) is a geodesic path which is an \(f_t \)-gradient curve for \(t \in (0, 1) \) and \(\alpha: (0, 1) \to A \) is another \(f_t \)-gradient curve. Then if for some \(t_0 \in (0, 1) \), \(\alpha(t_0) = \gamma(t_0) \) then \(\alpha(t) = \gamma(t) \) for all \(t \in (0, 1) \).

Proof. Note that function \(\ell = \ell(t) = |\alpha(t)\gamma(t)| \) is locally Lipschitz in \((0,1) \), according to 1.2, it is sufficient to show that

\[
\ell' \geq -[\frac{1}{t} + \frac{2}{1-t}] \ell
\]

for almost all \(t \).

Since \(\alpha \) is locally Lipschitz, for almost all \(t \), \(\alpha^+(t) \) and \(\alpha^-(t) \) are well defined and opposite\(^3\) to each other.

Fix such \(t \) and set \(x = \gamma(0), z = \gamma(t), y = \gamma(1), p = \alpha(t) \), so \(\ell(t) = |pz| \).

Note that function

\[
f_t + \frac{1}{2(1-t)} \text{dist}^2_y
\]

has a minimum at \(z \). Extend a geodesic \([zp]\) by a both-sides infinite unit-speed quasigeodesic\(^4\) \(\sigma: \mathbb{R} \to A \), so \(\sigma(0) = z \) and \(\sigma^+(0) = \gamma(z) \). The function \(f_t \circ \sigma: \mathbb{R} \to \mathbb{R} \) is \(\frac{1}{t} \)-concave and from \(3 \),

\[
f_t \circ \sigma(s) \geq f_t(z) + \langle \gamma^+(t), [zp] \rangle \cdot s - \frac{1}{2(1-t)} s^2.
\]

It follows that

\[
\langle \nabla_p f_t, \sigma^+(t) \rangle \geq d_p f_t(\sigma^+(t)) = (f_t \circ \sigma)^+ (t) \geq \langle \gamma^+(t), [zp] \rangle \geq \langle \frac{1}{t} + \frac{2}{1-t} \rangle \ell.
\]

Now,

1. Vectors \(\sigma^\pm(t) \) are polar, thus \(\langle \alpha^\pm(t), \sigma^+(t) \rangle + \langle \alpha^\pm(t), \sigma^-(t) \rangle \geq 0 \).
2. Vectors \(\alpha^\pm(t) \) are opposite, thus \(\langle \alpha^+(t), \sigma^+(t) \rangle + \langle \alpha^-(t), \sigma^-(t) \rangle = 0 \).
3. \(\alpha^+(t) = \nabla_p f_t \) and \(\sigma^-(t) = \gamma(z) \)

Thus, \(\langle \nabla_p f_t, \sigma^+(t) \rangle + \langle \alpha^+(t), [zp] \rangle = 0 \). Therefore

\[
\ell' = -\langle \alpha^+(t), [zp] \rangle - \langle \gamma^+(t), [zp] \rangle \geq -[\frac{1}{t} + \frac{2}{1-t}] \ell.
\]

2.2. Proposition. Let \(A \in \text{Alex}^m[0], f: A \to \mathbb{R} \) be a bounded continuous function and let \(f_t = \mathcal{H}_t f \). Assume \(\gamma: (0, a) \to A \) is an \(f_t \)-gradient curve which is also a constant-speed geodesic. Assume that function

\[
h(t) \overset{\text{def}}{=} \text{Trace Hess}_{\gamma(t)} f_t
\]

\(^3\)i.e. \(|\alpha^+(t)| = |\alpha^-(t)| \) and \(\angle(\alpha^+(t), \alpha^-(t)) = \pi \)

\(^4\)A careful proof of existence of quasigeodesics can be found in [Petrunin 07].
is defined for almost all \(t \in (0, a) \). Then

\[h' \leq -\frac{1}{m} h^2 \]

in the sense of distributions; i.e. for any non-negative Lipschitz function \(u: (0, a) \to \mathbb{R} \) with compact support

\[\int_0^a (\frac{1}{m} h^2 u - h u') \, dt \geq 0. \]

Proof. Since \(h \) is defined a.e., all \(T_{\gamma(t)} \) for \(t \in (0, a) \) are isometric to Euclidean \(m \)-space. From 2, \(f_{t_1}(x) = \inf_{y \in A} \left\{ f_{t_0}(y) + \frac{|xy|^2}{2(t_1 - t_0)} \right\}. \)

Thus, for a parallel transportation \(\tau: T_{\gamma(t_0)} \to T_{\gamma(t_1)} \) along \(\gamma \), we have

\[\text{Hess}_{\gamma(t_1)} f_{t_1}(y) \leq \text{Hess}_{\gamma(t_0)} f_{t_0}(x) + \frac{|\tau(t) y|^2}{2(t_1 - t_0)} \]

for any \(x \in T_{\gamma(t_0)} \) and \(y \in T_{\gamma(t_1)} \). Taking trace leads to the result. \(\square \)

3 Proof of the main theorem

Let \(A \in \text{Alex}^m[0] \); in particular \(A \) is a proper geodesic space. Let \(\mu_t \) be a family of probability measures on \(A \) for \(t \in [0, 1] \) which forms a geodesic path\(^5\) in \(P_2 A \) and both \(\mu_0 \) and \(\mu_1 \) are absolutely continuous with respect to volume on \(A \).

It is sufficient\(^6\) to show that the function

\[\Theta: t \mapsto U_m \mu_t \]

is concave.

According to [Villani, 7.22], there is a probability measure \(\pi \) on the space of all geodesic paths in \(A \) which satisfies the following: If \(\Gamma = \text{supp} \pi \) and \(e_\tau: \Gamma \to A \) is evaluation map \(e_\tau: \gamma \mapsto \gamma(t) \) then \(\mu_t = e_\tau# \pi \).

The measure \(\pi \) is called the *dynamical optimal coupling* for \(\mu_t \) and the measure \(\pi = (e_0, e_1)#\pi \) is the corresponding *optimal transference plan*. The space \(\Gamma \) will be considered further equipped with the metric \(\| \gamma \gamma' \| = \max_{t \in [0, 1]} \| \gamma(t) \gamma'(t) \| \).

First we present \(\mu_t \) as the push-forward for gradient flows of two opposite families of functions. According to [Villani, 5.10], there are optimal price functions \(\varphi, \psi: A \to \mathbb{R} \) such that

\[\varphi(y) - \psi(x) \leq \frac{1}{2} |xy|^2 \]

for any \(x, y \in A \) and equality holds for any \((x, y) \in \text{supp} \pi \). We can assume that \(\psi(x) = +\infty \) for \(x \notin \text{supp} \mu_0 \) and \(\varphi(y) = -\infty \) for \(y \notin \text{supp} \mu_1 \).

\(^5\)i.e. constant-speed minimizing geodesic defined on \([0, 1]\)

\(^6\)It follows from [Villani, 30.32] since Alexandrov’s spaces are nonbranching.
Consider two families of functions
\[\psi_t = \mathcal{H}_t \psi \quad \text{and} \quad \varphi_t = \mathcal{H}_{1-t}(-\varphi). \]
Clearly, \(\psi_t \) forms a \(\frac{1}{t} \)-concave family for \(t \in (0, 1] \) and \(\varphi_t \) forms a \(\frac{1}{1-t} \)-concave family for \(t \in [0, 1). \)

It is straightforward to check that for any \(\gamma \in \Gamma \) and \(t \in (0, 1) \)
\[\pm \langle \gamma^\pm(t), v \rangle = d_{\gamma(t)} \psi_t(v) = -\varphi_{\gamma(t)}(v); \]
in particular,
\[\gamma^+(t) = \nabla \psi_t \quad \text{and} \quad \gamma^-(t) = \nabla \varphi_t. \]

For \(0 < t_0 \leq t_1 \leq 1 \), let us consider the maps \(\Psi_{t_0, t_1}: A \to A \) — the gradient flow of \(\psi_t \), defined by
\[\Psi_{t_0, t_1}(t_0) = \alpha(t_1) \quad \text{if} \quad \alpha^+(t) = \nabla \psi_t. \]
Similarly, \(0 \leq t_0 \leq t_1 < 1 \), define map \(\Phi_{t_1, t_0}: A \to A \)
\[\Phi_{t_1, t_0}(t_1) = \beta(t_0) \quad \text{if} \quad \beta^-(t) = \nabla \varphi_t. \]

According to 1.2,
\[\Psi_{t_0, t_1} \text{ is } \frac{t_1-t_0}{t_0} \text{-Lipschitz} \quad \text{and} \quad \Phi_{t_1, t_0} \text{ is } \frac{t_1-t_0}{1-t_0} \text{-Lipschitz}. \]

From \(\Phi \), \(e_{t_1} = \Psi_{t_0, t_1} \circ e_{t_0} \) and \(e_{t_0} = \Phi_{t_1, t_0} \circ e_{t_1} \). Thus, for any \(t \in (0, 1) \), the map \(e_t: \Gamma \to A \) is bi-Lipschitz. In particular, for any measure \(\chi \) on \(A \), there is a uniquely determined one-parameter family of “pull-back” measures \(\chi_t^{\ast} \) on \(\Gamma \), i.e. such that \(\chi_t^{\ast} E = \chi(e_t E) \) for any Borel subset \(E \subset \Gamma \).

Fix some \(z_0 \in (0, 1) \) (one can take \(z_0 = \frac{1}{4} \)) and equip \(\Gamma \) with the measure \(\nu = \text{vol}^{z_0}_\ast \). Thus, from now on “almost everywhere” has sense in \(\Gamma \), \(\Gamma \times (0, 1) \) and so on.

Now we will represent \(\Theta \) in terms of families of functions on \(\Gamma \). Note that \(\mu_t = \Psi_{t_1} \ast \mu_1 \) and \(\Psi_{t_1} \) is \(\frac{1}{t_1-t_0} \)-Lipschitz. Since \(\mu_1 \) is absolutely continuous, so is \(\mu_t \) for all \(t \). Set \(\mu_t = \rho_t \cdot \text{vol} \). Note that from \(\Phi \), we get that
\[
\left(\frac{1-t_1}{1-t_0} \right)^m \leq \frac{\rho_t(\gamma(t_1))}{\rho_t(\gamma(t_0))} \leq \left(\frac{t_1}{t_0} \right)^m
\]
for almost all \(\gamma \in \Gamma \) and \(0 < t_0 < t_1 < 1 \). For \(\gamma \in \Gamma \) set \(r_t(\gamma) = \rho_t(\gamma(t)) \). Then
\[
\Theta(t) = \int_A \rho_t^{-\frac{m}{n}} \cdot d\mu_t = \int_\Gamma r_t^{-\frac{m}{n}} \cdot d\nu.
\]

In particular, \(\Theta \) is locally Lipschitz in \((0, 1) \).

Next we show that the measure \(\Delta \varphi_t \) is absolutely continuous on \(e_{t_1} \Gamma \) and that \(r_t(\gamma(t)) = \rho_t(\gamma(t)) \cdot \Delta \varphi_t \) in some weak sense. From \(\Phi \), \(\text{vol}_t^{z_0} = e^{w_1 \ast \nu} \) for some Borel function \(w_1: \Gamma \to \mathbb{R} \). Thus
\[
\text{vol}_{e_t} E = \int_E e^{w_1} \cdot d\nu
\]
7Note that usually \(\varphi_t \) is defined with opposite sign, but I wanted to work with semiconcave functions only.
for any Borel subset \(E \subset \Gamma \). Moreover, for almost all \(\gamma \in \Gamma \), we have that function \(t \mapsto w_t(\gamma) \) is locally Lipschitz in \((0, 1)\) (more precisely, \(t \mapsto w_t(\gamma) \) coincides with a Lipschitz function outside of a set of zero measure). In particular \(\frac{\partial w_t}{\partial t} \) is well defined a.e. in \(\Gamma \times (0, 1) \) and moreover

\[
w_t = \int_0^t \frac{\partial w_t}{\partial t} \, dt.
\]

Further, from 2.1, if \(0 < t_0 \leq t_1 < 1 \) then for any \(\gamma \in \Gamma \),

\[
\Psi_{t_0, t_1}(x) = \gamma(t_1) \iff x = \gamma(t_0),
\]

\[
\Phi_{t_1, t_0}(x) = \gamma(t_0) \iff x = \gamma(t_1).
\]

Thus, for any Borel subset \(E \subset \Gamma \),

\[
e_{t_1} E = \Psi_{t_0, t_1} \circ e_{t_0} E = \Phi_{t_0, t_1}^{-1}(e_{t_0} E),
\]

\[
e_{t_0} E = \Phi_{t_1, t_0} \circ e_{t_1} E = \Psi_{t_0, t_1}^{-1}(e_{t_1} E)
\]

Set

\[
v(t) \overset{\text{def}}{=} \text{vol} e_{t} E = \int_E e^{w_t} \, dv.
\]

From 1.3,

\[
v'(t) \overset{\text{def}}{=} \partial \Psi_t(e_t E) \overset{\text{def}}{=} -\partial \phi_t(e_t E).
\]

Thus, \(\Delta \psi_t + \Delta \phi_t = 0 \) everywhere on \(e_t \Gamma \). From 1.1,

\[
\Delta \psi_t \leq \frac{m}{t} \cdot \text{vol}, \quad \Delta \phi_t \leq \frac{m}{1-t} \cdot \text{vol}.
\]

Thus, both restrictions \(\Delta \psi_t|_{e_t \Gamma} \) and \(\Delta \phi_t|_{e_t \Gamma} \) are absolutely continuous with respect to volume. Therefore

\[
v'(t) \overset{\text{def}}{=} \int_{e_t E} \text{Trace Hess} \phi_t \cdot d \text{vol}.
\]

For the one parameter family of functions \(h_t(\gamma) = \text{Trace Hess}_{\gamma(t)} \phi_t \), we have

\[
v^t_{x_0} = \int_E (e^{w_t} - 1) \, dv = \int_{x_0}^t d \xi \cdot \int_E h_t e^{w_t} \, dv
\]

or any Borel set \(E \subset \Gamma \). Equivalently,

\[
\frac{\partial w_t}{\partial t} \overset{\text{def}}{=} h_t
\]

From 2.2,

\[
\frac{\partial h_t}{\partial t} \leq \frac{1}{m} h_t^2
\]
Thus, for almost all $\gamma \in \Gamma$, the following inequality holds in the sense of distributions:

$$\frac{\partial^2}{\partial t^2} \exp\left(\frac{w_t(\gamma)}{m}\right) = \left(\frac{1}{m^2} + \frac{1}{m} \frac{\partial h_t}{\partial t}\right) \exp\left(\frac{w_t(\gamma)}{m}\right) \leq 0;$$

i.e. $t \mapsto \exp\left(\frac{w_t(\gamma)}{m}\right)$ is concave — more precisely, $t \mapsto \exp\left(\frac{w_t(\gamma)}{m}\right)$ coincides with a concave function almost everywhere.

Clearly, for any t we have $\mu = r_t e^{w_t} \nu$. Thus, for almost all γ there is a non-negative Borel function $a : \Gamma \rightarrow \mathbb{R}$ such that $r_t \equiv a e^{-w_t}$. Continue Θ,

$$\Theta(t) = \int_\Gamma r_t^{-\frac{1}{m}} \cdot d\nu = \int_\Gamma e^{\frac{w_t}{m}} \cdot \sqrt{a} \cdot d\nu$$

i.e. Θ is concave as an average of concave functions. Again, more precisely, Θ coincides with a concave function a.e., but since Θ is locally Lipschitz in $(0, 1)$ we get that Θ is concave.

References

[Petrunin 07] Petrunin, A. Semiconcave Functions in Alexandrov’s Geometry, Surveys in Differential Geometry XI.