Problem 1: Use the comparison test to show that the following series converge:
(a) \[\sum_{n} \frac{\sqrt{n+1} - \sqrt{n}}{n} \]
(b) \[\sum_{n} \frac{1}{n^2 - \ln n} \]
You may use \(\ln x < x \) for \(x > 0 \).

Problem 2: Let \(f, g : \mathbb{R} \to \mathbb{R} \) be functions. Prove, using the sequence definition, that if \(f, g \) are continuous at \(x \), then

1. \(h := f + g \) is continuous at \(x \).
2. \(h := f - g \) is continuous at \(x \).
3. \(h := fg \) is continuous at \(x \).

Problem 3: Let \(f : \mathbb{R} \to \mathbb{R} \) be a function. Prove, using the \(\epsilon-\delta \) definition of continuity that if \(f(x) \neq 0 \) then there is some interval of the form \((x-\delta, x+\delta) \) where \(f \) is non-zero.

Problem 4: Let \(f, g : \mathbb{R} \to \mathbb{R} \) be functions. Use the previous exercise to show that if \(f, g \) are continuous at \(x \), and \(g(x) \neq 0 \) then \(h(y) := f(y)/g(y) \) is well-defined in some interval of the form \((x-\delta, x+\delta) \) and \(h \) is continuous at \(x \).

Problem 5: Prove that \(f(x) = \cos x \) is continuous at every \(x \in \mathbb{R} \).

Problem 6: Let \(f, g \) be two continuous functions on \([a, b]\), and assume that \(f(a) < g(a) \), but \(f(b) > g(b) \). Prove that \(f(x) = g(x) \) for some \(a < x < b \).

Problem 7: Prove that every function \(f : \mathbb{R} \to \mathbb{R}, f(x) = x^n \) with \(n \in \mathbb{N} \), is continuous at every \(x \in \mathbb{R} \).