Solutions, hw 10

1. The triangle inequality is

\[||x - y||_2 \leq ||a - y||_2 + ||a - x||_2 \]

and

\[||a - y||_2 \leq ||x - y||_2 + ||a - x||_2 \]

From the first inequality we have:

\[f_x(y) = ||x - y||_2 - ||a - y||_2 \leq ||a - x||_2, \]

from the second one:

\[f_x(y) = ||x - y||_2 - ||a - y||_2 \leq -||a - x||_2. \]

Therefore

\[|f_x(y)| \leq ||a - x||_2. \]

Since \(a \) and \(x \) are fixed, \(f_x(y) \) is bounded.

Now, let us prove that \(f_x(y) \) is continuous. Again, by triangle inequality for and \(h \in \mathbb{R}^n \)

\[-||h||_2 \leq ||x - (y + h)||_2 - ||x - y||_2 \leq ||h||_2, -||h||_2 \leq ||a - (y + h)||_2 - ||a - y||_2 \leq ||h||_2. \]

Therefore

\[f_x(y + h) - f_x(y) = ||x - (y + h)||_2 - ||a - (y + h)||_2 - ||x - y||_2 + ||a - y||_2 \\
\]

\[= (||x - (y + h)||_2 - ||x - y||_2) - (||a - (y + h)||_2 - ||a - y||_2) \\
\]

\[\leq ||x - (y + h)||_2 - ||x - y||_2 + ||a - (y + h)||_2 - ||a - y||_2 \leq 2||h||_2. \]

Similarly,

\[f_x(y + h) - f_x(y) \geq -2||h||_2. \]

Hence

\[|f_x(y + h) - f_x(y)| \leq 2||h||_2. \]

Therefore for any \(\varepsilon > 0 \), there exists \(\delta = \varepsilon/2 \), such that if

\[z \in B_\delta(y) \Leftrightarrow ||z - y|| < \varepsilon/2, \]

we have, setting \(h = z - y \),

\[|f_x(z) - f_x(y)| \leq 2||z - y||_2 < \varepsilon. \]

Finally,

\[\rho(f_x, f_y) = \sup_{z \in \mathbb{R}^n} |f_x(z) - f_y(z)|. \]

But

\[|f_x(z) - f_y(z)| = |||x - z||_2 - ||a - z||_2 - ||y - z||_2 + ||a - z||_2| \\
\]

\[= |||x - z||_2 - ||y - z||_2| \]

Again, by triangle inequality

\[-||x - y||_2 \leq ||x - z||_2 - ||y - z||_2 \leq ||x - y||_2. \]
and therefore
\[\rho(f_x, f_y) \leq \|x - y\|_2. \]

We only need to prove that
\[\sup_{z \in \mathbb{R}^n} |f_x(z) - f_y(z)| = \|x - y\|_2. \]

We can do it if we can find a point \(z \in \mathbb{R}^n \) such that
\[|f_x(z) - f_y(z)| = \|x - y\|_2. \]

Using
\[|f_x(z) - f_y(z)| = \||x - z||_2 - \|y - z||_2| \]
and choosing \(z = x \) we have
\[|f_x(x) - f_y(x)| = \|x - y\|_2. \]

Hence
\[\rho(f_x, f_y) = \|x - y\|_2. \]

2. Clearly, \(\rho(x, y) = |e^x - e^y| \geq 0, \rho(x, x) = |e^x - e^x| = 0. \) Suppose \(\rho(x, y) = 0, \) then
\[e^x = e^y \Leftrightarrow e^{x-y} = 1 \Leftrightarrow x - y = 0. \]

Symmetry is also straightforward: \(\rho(x, y) = |e^x - e^y| = |e^y - e^x| = \rho(y, x). \) Finally, the triangle inequality:
\[\rho(x, y) = |e^x - e^y| = |e^x - e^z + e^z - e^y| \leq |e^x - e^z| + |e^z - e^y| = \rho(x, z) + \rho(z, y). \]

3. Consider any point as a subset of \(X \) \(\{x\} \subset X. \) Let us show that it is open. Consider a neighborhood of \(x \) defined as
\[U_x = \{y \in X | \rho(x, y) < 1/2\} \]

We have that \(U_x = \{x\}, \) and therefore for any \(y \in \{x\} \) (there is only one such \(y, \) namely \(y = x!\)) the set \(\{x\} \) also contains a neighborhood of \(y: U_x \subset \{x\}. \) Hence \(\{x\} \) is open. Consider any subset of \(X: S \subset X. \) Since
\[S = \bigcup_{x \in S} \{x\}, \]
and each set \(\{x\} \) is open, we have that \(S \) is open. Therefore any subset of \(X \) is open. Finally, for any \(S \) consider \(S^c. \) Clearly \(S^c \subset X, \) and therefore it is open. Thus \(S \) is closed. Therefore any subset of \(X \) is closed.

4. Since we are in a metric space, we just need to show that the limit of any sequence in \(B_1(a), \) which converges to a point in \(X \) belongs to \(\tilde{B}_1(a). \) Suppose \(x_n \in B_1(a), n \in \mathbb{N}, \) and suppose \(x_n \to x, x \in X \) as \(n \to \infty. \) This means that
\[\rho(x_n, a) < 1, \rho(x_n, x) \to 0. \]

We need to show that \(x \in \tilde{B}_1(a). \) This means that
\[\rho(x, a) \leq 1. \]

By the triangle inequality we have for any \(n \)
\[\rho(x, a) \leq \rho(x_n, a) + \rho(x_n, x) < 1 + \rho(x_n, x). \]
Therefore (by the limit theorems)

$$\rho(x, a) \leq 1 + \lim_{n \to \infty} \rho(x_n, x) = 1.$$

Hence

$$\overline{B}_1(a) \subset \tilde{B}_1(a).$$

The example, where the inclusion is proper is as follows. Consider the discrete metric from the previous exercise on X, that contains only two points: $X = \{0, 1\}$. Then

$$\overline{B}_1(0) = B_1(0) = \{0\}, \quad \tilde{B}_1(0) = X = \{0, 1\} \neq \overline{B}_1(0).$$