Homework 7

1. Prove that in \mathbb{R}^n an intersection of compact sets is a compact set.
2. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence in a compact set $K \subset \mathbb{R}^n$ that is not convergent. Show that there are two subsequences of this sequence that are convergent to different limit points of K.
3. Let C be the Cantor set.
 a) Prove that C has no interior points,
 b) prove that C has no isolated points,
 c) compute the total length of the intervals removed from the unit interval in the construction of C and compare it with the length of the interval,
 d) prove that C is uncountable.
4. Describe all subsets of \mathbb{R}^n that have no cluster (limit) points at all.
 Clarification: here you need to state the simplest (in your opinion) defining characteristic of these sets and show that if a set does not satisfy this property then it has a limit point.
 Reminder: A limit point of a set does not have to be in that set. For example the set $\{1/n\}$, $n \in \mathbb{N}$ has 0 as a limit point.