Review Continuity

1. Give an example of a sequence of real valued functions \(f_n(x, y) \) defined on \([0, 1] \times [0, 1]\) such that \(f_n \) converges pointwise, but not uniformly.

2. Let \(f_n \) be continuous functions such that \(f_n \rightarrow f \) uniformly on \([a, b]\).
 Prove that \(f_n^2 \rightarrow f^2 \) uniformly on \([a, b]\).

3. Let \(f_n \) be continuous functions such that \(f_n \rightarrow f \) uniformly on \([a, b]\).
 Prove that for any continuous function \(g(x) \)
 \[
 \int_a^b g(x)f_n(x)dx \rightarrow \int_a^b g(x)f(x)dx
 \]

4. A trigonometric series is a series of the form
 \[
 \sum_{n=0}^\infty (A_n \sin 2nx + B_n \cos 2nx).
 \]
 Prove that this series defines a continuous function, if
 \[
 \sum_{n=0}^\infty (|A_n| + |B_n|) < \infty.
 \]

5. Let \(K \subset X \) be a compact set, and \(F \subset C(K, \mathbb{R}) \) is some compact family of functions. Show that for every \(\phi: \mathbb{R} \rightarrow \mathbb{R} \) which is continuous on \(\mathbb{R} \), \(F_\phi = \{ \phi(f(x)) | f \in F \} \) is compact in \(C(K, \mathbb{R}) \).

6. Let \(K \subset X \) be a compact set. Suppose \(F \subset C(K, [0, 1]) \) is some compact family of functions. Prove that there exists \(f_0 \in F \) and \(x_0 \in K \) such that
 \[
 f_0(x_0) \geq \sup_{f \in F} \sup_{x \in K} f(x).
 \]