1. Find a solution to
\[\frac{\partial u}{\partial t} - \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) - au = 0, \]
where \(a \) is a constant, with initial condition
\[u(0, x, y) = g(x, y). \]

Hint: Show that \(v = e^{-at}u \) satisfies the standard heat equation.

2. Find a solution \(u(t, x) \) to
\[
\begin{cases}
\frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} = 0, & t > 0, \quad x > 0, \\
u(0, x) = g(x), & x > 0, \quad (g(0) = 0) \\
u(t, 0) = 0, & t > 0.
\end{cases}
\]

Hint: Consider the odd extension of the initial data \(g(x) \):
\[
G(x) = \begin{cases}
 g(x), & x > 0, \\
 -g(-x), & x < 0,
\end{cases}
\]
and solve the heat equation in the whole line with initial data \(G(x) \).

3. Find the fundamental solution \(\phi \) for a dipole source:
\[\Delta \phi(x) = \nabla \delta(x) \cdot \mathbf{y} \equiv \lim_{h \to 0} \frac{\delta(x + h\mathbf{y}) - \delta(x)}{h}, \]
where \(\mathbf{y} \) is a fixed unit vector. (In electrostatics, a dipole source is like a battery with its two terminals extremely close together in physical space.)

Optional problem. Apply Duhamel’s principle to derive a solution to
\[\frac{\partial u}{\partial t} \left(\frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2} + \frac{\partial^2 u}{\partial x_3^2} \right) = f(t, x_1, x_2, x_3), \]
with initial condition
\[u(0, x_1, x_2, x_3) = 0. \]
The idea is similar to that of the wave equation.

End.