Chapter VI. Partial Differential Equations

Tentative contents

A. In infinite domains.
 6.2. wave equation in \mathbb{R}^1.
 6.3. wave equation in \mathbb{R}^3.
 6.4. wave equation in \mathbb{R}^2.
 6.5. Heat equation in \mathbb{R}^n and \mathbb{R}^1_+.
 6.6. Laplace and Poisson equations in \mathbb{R}^n.
 6.7. Concept of fundamental solutions.

B. On rectangular domains, separation of variables.
 6.8. Laplace equation in a rectangle, Fourier series.
 6.9. Poisson equation in a rectangle.
 6.10. Heat equation in a rectangle.
 6.11. Wave equation in a rectangle.
 6.13. Explicit eigenfunctions, orthogonal polynomials, special functions, Bessel’s functions.

C. General Bounded domains, Green’s function.
 6.15. Poisson equation in general bounded domains, Green’s function

6.1 Transport equation, method of characteristics

We consider the simplest partial differential equation

$$\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0, \quad t > 0, \quad x \in \mathbb{R}^1,$$

where a is a constant. The general solution formula is

$$u(t, x) = g(x - at)$$

where $g(\cdot)$ is an arbitrary (smooth) function. Let $t = 0$ in (2), we see that

$$u(0, x) = g(x),$$
thus \(g(\cdot) \) is the initial condition for \(u \) and equation (1). One can let \(g \) be a Gaussian: \(g(x) = e^{-x^2} \) and plot the solution at times \(t = 1, 2, 3, \ldots, 10 \) for \(a = -2, -1, 0, 1, 2 \). We can conclude that the graph of \(u(t, x) \) is simply the graph of \(g(x) \) shifted by the amount \(at \) in the \(x \) direction.

![Figure 6.1. Transport feature (shown for positive velocity \(a \)).](image)

We consider now the transport equation in \(n \)-dimension

\[
\frac{\partial u}{\partial t} + a_1 \frac{\partial u}{\partial x_1} + a_2 \frac{\partial u}{\partial x_2} + \cdots + a_n \frac{\partial u}{\partial x_n} = 0, \quad t > 0, \quad \vec{x} = (x_1, \ldots, x_n) \in \mathbb{R}^n
\]
with initial condition

\[
u(0, \vec{x}) = g(\vec{x}).
\]

It can be readily verified that

\[
u(t, \vec{x}) = g(\vec{x} - \vec{a}t),
\]

Equation (4) is called a passive transport equation. We can add a source term to it and consider

\[
\left\{ \begin{array}{l}
\frac{\partial u}{\partial t} + \vec{a} \cdot \nabla u = f(t, \vec{x}), \\
u(0, \vec{x}) = g(\vec{x}).
\end{array} \right.
\]

Let us consider the straight lines

\[
\frac{d\vec{x}}{dt} = \vec{a},
\]
i.e.,

\[
\vec{x} = \vec{x}(t) \equiv \vec{x}_0 + \vec{a}t,
\]
which cover the whole space $\mathbb{R}^n \times \mathbb{R}$, when \bar{x}_0 and t vary freely. These lines are called characteristic lines of equation (7). See Figure 6.2. Let us fix a \bar{x}_0 and consider the function $u(t, \bar{x}(t))$. We find

$$\frac{d}{dt} u(t, \bar{x}(t)) = \frac{\partial u}{\partial t} + \nabla u \cdot \frac{d}{dt} \bar{x}(t) = \frac{\partial u}{\partial t} + a \cdot \nabla u = f(t, \bar{x}(t)). \tag{10}$$

Thus we can integrate (10) to find

$$u(t, \bar{x}(t)) = u(0, \bar{x}(0)) + \int_0^t f(s, \bar{x}(s))ds = g(\bar{x}_0) + \int_0^t f(s, \bar{x}_0 + \bar{a}s) ds. \tag{11}$$

Looking at the characteristic lines the other way around, we can first fix a point $(t, \bar{x}) \in \mathbb{R}^1 \times \mathbb{R}^n$, and determine an \bar{x}_0 at $t = 0$ from (9), and then (11) reads as

$$u(t, \bar{x}) = g(\bar{x} - \bar{a}t) + \int_0^t f(s, \bar{x} - \bar{a}(t - s))ds.$$

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{characteristic_lines.png}
\caption{Characteristic lines.}
\end{figure}

Motivation of the equation:

Convection or transport is an important part in many partial differential equations, such as neutron transport, Boltzmann equation, fluid dynamics, etc.

The method used in (8)-(11) is called the method of characteristics. This method can be used to solve equation (7) when \bar{a} is a function of (t, \bar{x}), or even when \bar{a} is a function of u, making (7) a nonlinear first-order equation.