Bounded linear functionals, Riesz representation, Dirac delta

There are generally many bounded linear functionals. But there is an excellent representation of bounded linear functionals on Hilbert spaces.

Theorem (Riesz representation theorem) Any bounded linear functional T on a Hilbert space H can be represented by a member $g \in H$ in the form of the inner product

$$Tf = \langle g, f \rangle, \quad \text{for all } f \in H.$$

Example 3. On \mathbb{R}^n, a linear function $f(x_1, x_2, \cdots, x_n)$, i.e., it satisfies

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

for all real α and β and all points x and y in \mathbb{R}^n, takes the form of an inner product with a vector $\alpha = (\alpha_1, \cdots, \alpha_n)$:

$$f(x_1, x_2, \cdots, x_n) = \alpha_1 x_1 + \cdots + \alpha_n x_n = \alpha \cdot x.$$

(Comment: What is normally called linear in \mathbb{R}^n:

$$f(x_1, x_2, \cdots, x_n) = \alpha_1 x_1 + \cdots + \alpha_n x_n = \alpha \cdot x + b$$

where b is a scalar number, should be, and is actually called affine.

Let p be a number such that $1 < p < \infty$. And let q be such that

$$\frac{1}{p} + \frac{1}{q} = 1.$$

We have

Theorem (Riesz representation part II) Any bounded linear functional T on $L^p[a, b]$ can be represented by a function $g \in L^q[a, b]$ in the form

$$Tf = \int_a^b f(x)g(x)dx.$$

We note that the Hölder inequality is helpful:

$$|\int_a^b f(x)g(x)dx| \leq \|f\|_{L^p} \|g\|_{L^q}.$$
Dirac delta functional. Consider the Banach space $C[a, b]$. Its bounded linear functionals form a space called *finite Borel Measures*, which include the Dirac delta functional $\delta(x - x_0)$. Let us first consider the example functional:

$$Tf = f(x_0);$$

i.e., T takes any continuous function $f(x)$ to a number $f(x_0)$ where x_0 is a point in the interval (a, b). This functional is linear since

$$T(\alpha f + \beta h) = \alpha f(x_0) + \beta h(x_0) = \alpha T(f) + \beta T(h).$$

It is bounded since

$$|Tf| = |f(x_0)| \leq \max_{x \in [a, b]} |f(x)| = \|f\|_{C^0}.$$

Traditionally this function is written as

$$Tf = \int_a^b \delta(x - x_0)f(x)dx \quad (= f(x_0))$$

in line with the L^q representation of functionals on $L^p[a, b]$. In this representation, the $\delta(x - x_0)$ was regarded as a generalized function with the properties:

a. $\int_a^b \delta(x - x_0)dx = 1, (x_0 \in [a, b])$

b. $\delta(x - x_0) = 0$ for $x \neq x_0$.

We note that $\delta(x - x_0)$ is not a functional on the space $L^p[a, b]$ since an L^p function may not be defined on individual points.

Functionals are defined by their actions on functions. We regard a functional as well-defined if its actions on all functions of a space are defined. This still leave room for the functional itself, but we regard that room as irrelevant.

3.3. Bounded linear operators and adjoint operators.

Similar to the linear transformations L from a Euclidean space R^n to R^n represented by

$$y = Ax,$$

we define a **linear operator** L from a Hilbert space H to H to be a mapping that satisfies

$$L(\alpha f + \beta g) = \alpha Lf + \beta Lg$$
for all real numbers \(\alpha \) and \(\beta \) and all members \(f \) and \(g \) in \(H \). The linear operator is called \textbf{bounded} if there exists a constant \(C \) such that

\[\|Lf\| \leq C\|f\| \]

for all \(f \in H \).

Let us look at an example. From the differential equation

\[\frac{d^2u}{dx^2} = f(x), \quad 0 < x < 1 \]

with the two-point boundary value

\[u(0) = u(1) = 0, \]

one can obtain the solution formula

\[u(x) = \int_0^1 k_0(x,y)f(y)dy \]

where

\[k_0(x,y) = \begin{cases} y(x-1), & 0 \leq y < x \leq 1 \\ x(y-1), & 0 \leq x < y \leq 1. \end{cases} \]

This solution formula is a bounded linear operator for \(f(x) \in L^2[0,1] \) to \(u(x) \in L^2[0,1] \), see the next theorem.

Theorem. For any \(k(x,y) \) such that

\[\int_a^b \int_a^b k^2(x,y)dxdy = C < \infty, \]

the operator

\[Tu(x) = \int_a^b k(x,y)u(y)dy \]

is a bounded linear operator from \(L^2[a,b] \) to \(L^2[a,b] \).

This operator is called a \textbf{Hilbert-Schmidt operator}.

Proof. We use Cauchy-Schwarz inequality

\[
\|Tu(x)\| = (\int_a^b (Tu(x))^2 dx)^{1/2} \\
= (\int_a^b (\int_a^b k(x,y)u(y)dy)^2 dx)^{1/2} \\
\leq (\int_a^b (\int_a^b k^2(x,y)dxdy)(\int_a^b u^2(y)dy)dx)^{1/2} \\
= (\int_a^b \int_a^b k^2(x,y)dxdy)^{1/2}(\int_a^b u^2(y)dy)^{1/2} \\
= C\|u\|. \tag{1}
\]
The proof is complete.

Another example is the Fourier transform \mathcal{F} that takes a function in L^2 to a function in L^2, and the operator has norm 1:

$$\|\mathcal{F}f\|_{L^2} = \|f\|_{L^2}$$

It is so amazing.

=====End of Lecture 22, Oct 23. ======