1. Let \(f : X \times [a, b] \to \mathbb{R} \) where \([a, b]\) is a finite interval. Assume that the function \(x \mapsto f(x, y) \) is integrable for every \(y \in [a, b] \). Assume also that \(\partial_y f(x, y) \) exists for every \((x, y) \) and there exists a function \(g \in L^1 \) such that \(|\partial_y f(x, y)| \leq g(x) \) for all \((x, y) \). Show that the function \(x \mapsto \partial_y f(x, y) \) is measurable for every \(y \), and

\[
\partial_y \int f(x, y) d\mu(x) = \int \partial_y f(x, y) d\mu(x).
\]

Solution: Fix \(y \in [a, b] \) and let \(y_n \in (a, b) \) be any sequence converging to \(y \). Define

\[
f_n(x) = \frac{1}{y_n - y} \left[f(x, y_n) - f(x, y) \right].
\]

The right-hand side defines a measurable function in \(x \). Since \(f_n(x) \to \partial_y f(x, y) \), it follows that \(x \mapsto \partial_y f(x, y) \) is a measurable function on \(X \). Applying the mean-value theorem we get

\[
|f_n(x)| \leq \sup_{y \in [a, b]} |\partial_y f(x, y)| \leq g(x).
\]

By DCT,

\[
\partial_y \int f(x, y) d\mu(x) = \lim_{n \to \infty} \int_X f_n(x) d\mu(x) = \int_X \lim_{n \to \infty} f_n(x) d\mu(x) = \int \partial_y f(x, y) d\mu(x).
\]

2. Prove:

(a) \(\|f_n - f\|_\infty \to 0 \) if and only if there exists \(E \in \mathcal{M} \) such that \(\mu(E^c) = 0 \) and \(f_n \to f \) uniformly on \(E \).

(b) \((L^\infty, \| \cdot \|_\infty)\) is a Banach space.

Solution (a) Assume that \(f_n \to f \) uniformly on \(E \) and that \(\mu(E^c) = 0 \). Given \(\varepsilon > 0 \), there is \(N \) such that \(|f_n(x) - f(x)| < \varepsilon \) for all \(x \in E \) and all \(n \geq N \). Then \(\|f_n - f\|_\infty \to 0 \) as \(n \to \infty \). Conversely, let \(E_n^c = \{ x \mid |f_n(x) - f(x)| < 1/n \} \). Since \(|f_n - f|_\infty \to 0 \), for every \(n \in \mathbb{N} \) there exists \(N_n \in \mathbb{N} \) such that \(\mu(E_n^c) = 0 \) for all \(k \geq N_n \). Set \(E^n = \bigcup_{k \geq N_n} E_k \) and \(E = \bigcap_{n \geq 1} E^n \). Then \(\mu(E) = 0 \). Take \(\varepsilon > 0 \) and let \(N = N_n \) such that \(1/n < \varepsilon \). If \(x \in E \), then \(x \in E_n \) so that \(|f_k(x) - f(x)| < 1/n < \varepsilon \) for all \(k \geq N = N_n \) showing that \(f_n \to f \) uniformly on \(E \).

(b) Assume that \(\|f_n - f\|_m \to 0 \) as \(m \to \infty \). Arguing as above, there exists a \(\mu \)-measurable set \(E \) with \(\mu(E^c) = 0 \) and such that the complex valued sequence \((f_n) \) is uniformly Cauchy on \(E \). Hence for every \(x \in E \), there is \(f(x) \in \mathbb{C} \) such that \(f_n(x) \to f(x) \). Set \(f(x) = 0 \) if \(x \in E^c \). Then \(f \) is measurable on \(X \) and \(f_n \to f \) uniformly on \(E \), that is, \(\|f_n - f\|_\infty \to 0 \). Moreover, there is \(N \in \mathbb{N} \) such that \(|f(x) - f_N(x)| \leq 1 \) for all \(x \in E \). So, \(|f(x)| \leq |f(x) - f_N(x)| + |f_N(x)| \leq 1 + \|f_N\|_\infty \) for all \(x \in E \). Since \(\mu(E^c) = 0 \), \(\|f\|_\infty \leq 1 + \|f\|_\infty < \infty \). Hence \(f \in L^\infty \).

3. Assume that \(\mu(X) = \infty \) and \(X = \bigcup_{k \geq 1} E_k \) with \(\mu(E_k) < \infty \).

(a) Show that there are sets \(F_k \in \mathcal{M} \) such that \(X = \bigcup_{k \geq 1} F_k \) and \(1 \leq \mu(F_k) < \infty \) for every \(k \).

(b) Use this fact to construct a function \(f \in L^p \) for all \(1 < p \leq \infty \) but \(f \not\in L^1 \).

Solution: (a) We may assume that the original sets \(E_k \) are disjoint. (Otherwise,
consider \(E'_k = E_1 \) and \(E'_k = E_k \setminus \bigcup_{j \geq 1} E_j \). Then the sets \(E'_k \) are disjoint, \(X = \bigcup_k E_k = \bigcup_k E'_k \), and \(\mu(E'_k) \leq \mu(E_k) < \infty \). Since \(\sum_{k=1}^{\infty} \mu(E_k) = \mu(X) = \infty \), one finds a strictly increasing sequence \((N_k)_{k \geq 0} \) \(N_0 = 1 \) and \(1 \leq \sum_{j=N_k+1}^{N_{k+1}} \mu(E_j) = \mu(\bigcup_{j=N_k+1}^{N_{k+1}} E_j) \). Now set \(F_k = \bigcup_{j=N_k}^{N_{k+1}} E_j \) for \(k \geq 1 \).

(b) Let \((F_k) \) be as above. Define \(f = \sum_{k=1}^{\infty} \frac{1}{k!} \chi_{F_k} \). Since \(F_k \) are disjoint, \(\int f^p = \sum_{k=1}^{\infty} \frac{1}{k! k^p} \mu(F_k) = \sum_{k=1}^{\infty} \mu(F_k) \mu(F_k) / k^p \leq \sum_{k=1}^{\infty} 1 / k^p < \infty \) if \(p > 1 \) (here we used that \(1 / \mu(F_k) < 1 \) and \(p \geq 1 \)). So, \(f \in L^p \) for \(1 < p \leq \infty \). If \(p = 1 \), then \(f = \sum_{k=1}^{\infty} (1 / k) = \infty \) showing that \(f \notin L^1 \).

4. Assume that \((f_n),(g_n)\) and \((h_n)\) are sequences of measurable functions satisfying \(g_n \leq f_n \leq h_n \) \(\mu\)-a.e. and \(g_n \to g, f_n \to f \) and \(h_n \to h \). Assume that \(g,h \in L^1 \) and

\[
\int g_n \to \int g \quad \text{and} \quad \int h_n \to \int h.
\]

By reworking the proof of the Lebesgue dominated convergence theorem, show that \(f \in L^1 \) and

\[
\int f_n \to \int f.
\]

Solution: By the assumptions, \(f_n - g_n \geq 0 \) and \(h_n - f_n \geq 0 \). The Fatou’s lemma applied to \(f_n - g_n \) gives

\[
\int f - \int g = \int (f - g) = \int \liminf_{n \to \infty} (f_n - g_n) \leq \liminf_{n \to \infty} \int (f_n - g_n) \leq \liminf_{n \to \infty} \int f_n - \int g.
\]

Similarly,

\[
\int h - \int f = \int (h - f) = \int \liminf_{n \to \infty} (h_n - f_n) \leq \liminf_{n \to \infty} \int (h_n - f_n) \leq \liminf_{n \to \infty} \left(\int h_n - \int f_n \right) = \int h - \limsup_{n \to \infty} \int f_n.
\]

Since \(g,h \in L^1 \), \(\liminf_{n \to \infty} \int f_n \geq \int f \geq \limsup_{n \to \infty} \int f_n \), and the result follows.

5. Let \(1 \leq p < \infty \) and let \((f_n) \subset L^p \). Assume that \(f_n \to f \) \(\mu\)-a.e. with \(f \in L^p \). Use Problem 4 to show that

\[
\|f_n - f\|_p \to 0 \quad \text{if and only if} \quad \|f_n\|_p \to \|f\|_p.
\]

Solution: Since \(\|f\|_p \leq \|f_n\|_p + \|f_n - f\|_p \) and \(\|f_n\|_p \leq \|f\|_p + \|f_n - f\|_p \), it follows that \(\|f_n\|_p - \|f\|_p \leq \|f_n - f\|_p \). Hence if \(\|f_n - f\|_p \to 0 \), then \(\|f_n\|_p \to \|f\|_p \).

Conversely, assume that \(f_n \to f \) \(\mu\)-a.e. with \(f \in L^p \), and \(\|f_n\|_p \to \|f\|_p \). Then

\[
0 \leq |f_n - f|^p \leq 2^p \|f_n\|^p + |f|^p.
\]

Setting \(g_n = 0 \), \(h_n = 2^p \|f_n\|^p + |f|^p \), one gets \(h_n \to h = 2^p |f|^p \), \(f \to f \) (since \(\|f_n\|_p \to \|f\|_p \)). Since \(|f_n - f|^p \to 0 \), the problem 4 implies \(\|f_n - f\|^p \to 0 \), that is, \(\|f_n - f\|_p \to 0 \).