1. **The Cantor Set.** Denote by $C_0 = [0,1]$. Let C_1 be the set obtained by removing the middle third open interval of C_0, that is, $C_1 = [0,1/3] \cup [2/3,1]$. Next, let C_2 be the set obtained by removing the middle third open interval from each interval of C_1. Continuing this way, we obtain a decreasing sequence of closed sets $C_0 \supset C_1 \supset C_2 \supset \cdots$. The Cantor set C is the intersection of all C_k’s, $C = \bigcap_{k=0}^{\infty} C_k$. Show:

(a) C is totally disconnected, that is, if $x, y \in C$ and $x < y$, then there is $z \in (x, y)$ such that $z \notin C$.

(b) C is perfect, that is, it is closed and without isolated points.

(c) C is measurable and $m(C) = 0$.

Solution: (a) Let $x, y \in C$ and $x < y$. Assume that the interval $(x, y) \subset C$. Then $(x, y) \subset C_k$, $k \geq 0$. So, the length of (x, y) is less or equal to $1/3^k$ for every k, contradiction.

(b) Take $x \in C$. Then x belongs to the unique closed interval I_k constituting C_k. The length of I_k is equal to $1/3^k$. If a_k is the left end point of I_k, then $a_k \in C$ and $|x - a_k| \leq 1/3^k$. So, the point x is not isolated and the set C is perfect.

(c) The set C_k consists of 2^k disjoint closed intervals each of length $1/3^k$. Hence $m^*(C_k) \leq (2/3)^k$ and $m^*(C) = m^*(\bigcap_{k=0}^{\infty} C_k) \leq m^*(C_k) \leq (2/3)^k$ for every k. Hence $m^*(C) = 0$ showing that C is measurable with $m(C) = 0$.

2. Similarly as the Cantor set, we construct a subset C_δ of $[0,1]$, except that at the kth step, each removed open interval has length $\delta 3^{-k}$, where $0 < \delta < 1$. Show that C_δ is measurable and $m(C_\delta) = 1 - \delta$.

Solution: Denote by C_k the set obtained in the kth step. The set C_δ is equal $C_\delta = \bigcap_{k \geq 0} C_k$. Every C_k is closed as a finite union of closed intervals. So, C_δ is closed as a intersection C of closed sets. This implies that C_δ measurable. To calculate its measure, note that C_k consists of 2^k disjoint closed intervals. To obtain C_{k+1} one removes the middle interval of length $\delta/3^{k+1}$ from each of the intervals of C_k. Hence the measure of the removed intervals is equal to $2^k/3^{k+1}$. This shows that $m(C_{k+1}) = m(C_k) - \delta 2^k/3^{k+1} = \cdots = 1 - \delta \sum_{j=0}^{k} 2^j/3^{j+1}$. Since $C_k \setminus C_\delta$, using the continuity from above one finds

$$m(C_\delta) = \lim_k m(C_k) = \lim_k [1 - \delta \sum_{j=0}^{k} 2^j/3^{j+1}] = 1 - \delta.$$

3. Let $\delta = (\delta_1, \ldots, \delta_d)$ be a d-tuple of positive numbers δ_i, and $E \subset \mathbb{R}^d$. Define $\delta E = \{(\delta_1 x_1, \ldots, \delta_d x_d) | (x_1, \ldots, x_n) \in E\}$. Prove that δE is measurable whenever E is measurable and that $m(\delta E) = \delta_1 \cdots \delta_d \cdot m(E)$.

MATH 501 - FALL 2007

Solutions to HOMEWORK 1
Solution: Abbreviate \(r=\delta_1\cdots\delta_d \). If \(Q \) is a closed cube, then \(m_*(\delta Q) = |\delta Q| = r|Q| \). Moreover, if \(O \subseteq \mathbb{R}^d \) is open, then \(\delta O \) is also open. Let \(E \subseteq \mathbb{R}^d \) be measurable. Given \(\varepsilon > 0 \), there exists an open set \(O \) such that \(E \subseteq O \) and \(m_*(O \setminus E) \leq \varepsilon/(2r) \). By the definition of \(m_* \), there exists a sequence \((Q_j)_{j \geq 1} \) of closed cubes such that \(O \setminus E \subseteq \bigcup_{j=1}^\infty Q_j \) and \(\sum_{j=1}^\infty |Q_j| \leq m_*(O \setminus E) + \varepsilon/(2r) \). Hence \(\sum_{j=1}^\infty |Q_j| \leq \varepsilon/r \). Since \(\delta E \subseteq \delta O \) and \(\delta O \setminus E \subseteq \bigcup_{j} \delta Q_j \), the countable sub-additivity of \(m_* \) implies
\[
m_*((\delta E \setminus E) \subseteq \sum_{j=1}^\infty |\delta Q_j| = r \sum_{j=1}^\infty |Q_j| < \varepsilon.
\]
Hence \(\delta E \) is measurable. To see that \(m_*(\delta E) = r \cdot m(E) \), let \(\varepsilon > 0 \) and let \((Q_j) \) be a sequence of closed cubes such that \(E \subseteq \bigcup_{j} Q_j \) and \(\sum_{j=1}^\infty |Q_j| \leq m_*(E) + \varepsilon/r \).

Then \(\delta E \subseteq \bigcup_{j} \delta Q_j \). By countable sub-additivity of \(m_* \) we find that
\[
m_*((\delta E \setminus E) \subseteq \sum_{j=1}^\infty m_*(\delta Q_j) = r \sum_{j=1}^\infty |Q_j| \leq rm_*(E) + \varepsilon.
\]
This implies that \(m_*((\delta E \setminus E) \subseteq rm_*(E) \). Denote by \(1/\delta = (1/\delta_1,\ldots,1/\delta_d) \) and note that \((1/\delta)(\delta E) = E \). So,
\[
m_*(E) = m_*(1/\delta)(\delta E)) \leq \frac{1}{r} m_*(\delta E).
\]
Hence \(rm_*(E) \leq m_*(\delta E) \).

4. Assume that \(A \subseteq \mathbb{R}^p \) and \(B \subseteq \mathbb{R}^q \) are measurable. Prove that \(A \times B \) is a measurable subset of \(\mathbb{R}^{p+q} = \mathbb{R}^p \times \mathbb{R}^q \) and that \(m(A \times B) = m(A)m(B) \). (Interpret \(0 \cdot \infty \) as 0).

Solution:
(a) If \(A \subseteq \mathbb{R}^p \) and \(B \subseteq \mathbb{R}^q \) are closed cubes, then \(A \times B \) is a closed rectangle in \(\mathbb{R}^{p+q} \) and \(|A \times B| = |A| \cdot |B| \). Since the outer measure of a cube (of a rectangle) is equal to its volume, one concludes \(m(A \times B) = m(A)m(B) \).

(b) If \(A \subseteq \mathbb{R}^p \) and \(B \subseteq \mathbb{R}^q \) are open, then \(A \times B \) is open in \(\mathbb{R}^{p+q} \). Then \(A = \bigcup_{j \geq 1} Q_j \) and \(B = \bigcup_{k \geq 1} P_k \) where \(Q_j \)'s and \(P_k \)'s are almost disjoint closed cubes in \(\mathbb{R}^p \) and \(\mathbb{R}^q \), respectively. Moreover, \(m(A) = \sum_{j \geq 1} m(Q_j) \) and \(m(B) = \sum_{k \geq 1} m(P_k) \).

Since \(A \times B = \bigcup_{j,k \geq 1} Q_j \times P_k \), the rectangles \(Q_j \times P_k \) are almost disjoint, one concludes from 1. that
\[
m(A \times B) = \sum_{j,k \geq 1} m(Q_j \times P_k) = \sum_{j,k \geq 1} m(Q_j)m(P_k) = \sum_{j \geq 1} m(Q_j) \sum_{k \geq 1} m(P_k) = m(A)m(B).
\]

(c) Let \(A \) and \(B \) be bounded \(G_\delta \) sets. Then \(A = \bigcap_{j \geq 1} G_j \), \(B = \bigcap_{k \geq 1} H_k \) where \(G_j \) and \(H_k \) are open in \(\mathbb{R}^p \) and \(\mathbb{R}^q \), respectively. Since \(A \) is bounded, \(A \subseteq Q \) where \(Q \) is an open cube. Then \(A = \bigcup_{j \geq 1} [G_j \cap Q] \) and \(G_j \cap Q \) are open and bounded. Hence we may assume that the sets \(G_j \) and \(H_k \) are open and bounded. Considering decreasing sequence of open sets \(G_1 \cap G_2 \cap \cdots \cap G_j \) for \(j \geq 1 \), we
have \(A = \bigcap_{j=1}^{\infty} [G_1 \cap \cdots \cap G_j] \). Hence we may assume \(G_j \setminus A, H_j \setminus B \). Then
\[G_j \times H_j \setminus A \times B = \bigcap_{j=1}^{\infty} G_j \times H_j. \] By the continuity from above and by (a),
\[m(A \times B) = \lim_{j} m(G_j \times H_j) = \lim_{j} m(G_j) = \lim_{j} m(H_j) = m(A) \times m(B). \]

(d) Let \(A \) be \(G_{\delta} \) sets and \(B \) be a bounded \(G_{\delta} \) sets. Then \(A = \bigcup_{j=1}^{\infty} A_j \) where \(A_j = A \cap B_j(0) \). Each \(A_j \) is a bounded \(G_{\delta} \) set and \(A_j \not\subset A \). Then \(A_j \times B \) is a bounded \(G_{\delta} \) and \(A \times B \). Using the continuity from below and (c), one finds
\[m(A) = \lim_{j} m(A_j) = \lim_{j} m(A_j \times B) = m(A \times B). \]

In the general case when both \(A \) and \(B \) are both \(G_{\delta} \) sets but applied to \(B \) shows that \(A \times B \) is measurable and
\[m(A \times B) = m(A)m(B). \]

(e) Let \(A \) be bounded and \(m(B) = 0 \). Then \(A \) is a subset of a closed cube \(P \subset \mathbb{R}^p \) and, given \(\varepsilon > 0 \), there is a sequence \((Q_j) \) of closed cubes in \(\mathbb{R}^q \) such that \(B \subset \bigcup_{j} Q_j \) and \(\sum_{j} |Q_j| < \varepsilon |P| \). Then
\[A \times B \subset \bigcup_{j} P \times Q_j \] and \(\sum_{j} |P \times Q_j| < \varepsilon \).

Since \(\varepsilon > 0 \) is arbitrary, \(A \times B \) has measure 0 in \(\mathbb{R}^p \times \mathbb{R}^q \) and so, it is measurable.

If \(A \) is an arbitrary set in \(\mathbb{R}^p \), then \(A = \bigcup_{j} A_j \) where \(A_j = A \cap B_j(0) \). The set \(A_j \) is bounded, hence \(A_j \times B \) is of measure 0 in \(\mathbb{R}^p \times \mathbb{R}^q \).

(f) Finally, let \(A, B \) be measurable in \(\mathbb{R}^p \) and \(\mathbb{R}^q \), respectively. Then \(A = G \setminus N \) and \(H \setminus M \) where \(G, H \) are \(G_{\delta} \) sets such that \(A \subset G, B \subset H \), and \(N, M \) are sets of measure 0. Then
\[m(A) = m(G) \text{ and } m(B) = m(H), \]
and
\[m(A \times B) \leq m(G \times H) \] and from (1)
\[m(G \times H) \leq m(A \times B) \] Hence
\[m(A \times B) = m(G \times H) \] and
\[m(A \times B) = m(G \times H) = m(G)m(H) = m(A)m(B). \]

Here is much shorter proof of measurability of \(A \times B \) provided that \(A \) is measurable in \(\mathbb{R}^p \) and \(B \) is measurable in \(\mathbb{R}^q \). Note that \(A \times B = (A \times \mathbb{R}^q) \cap (\mathbb{R}^p \times B) \). Hence it suffices to prove that \(A \times \mathbb{R}^n \) is measurable (the proof for the set \(\mathbb{R}^p \times \mathbb{R}^q \) is similar).

The set \(A \) can be written as \(A = F \cup Z \) where \(F \) is a \(F_{\sigma} \) set and \(Z \) is of measure 0. Then
\[A \times \mathbb{R}^q = (F \times \mathbb{R}^q) \cup (N \times \mathbb{R}^q). \] Since \(F = \bigcup_{k} F_k \) with \(F_k \) closed,
\[F \times \mathbb{R}^q = \bigcup (F_k \times \mathbb{R}^q) \] so that \(F \times \mathbb{R}^q \) is \(F_{\sigma} \) set since \(F_k \times \mathbb{R}^q \) are closed. The set \(N \times \mathbb{R}^q \) has measure zero and the proof is given in (e).

5. Let \(N \) be a nonmeasurable subset of \(I = [0, 1] \) introduced in class. Prove:
 (a) If \(E \) is a measurable subset of \(N \), then \(m(E) = 0 \).
 (b) If \(E \subset \mathbb{R} \) satisfies \(m^*(E) > 0 \), then \(E \) contains a nonmeasurable subset.
 (c) If \(N^c = I \setminus N \), then \(m^*(N^c) = 1 \) and \(m^*(N^c \cup N) \neq m^*(N^c) + m^*(N) \).

Solution: (a) Assume that \(m(E) > 0 \), and consider sets \(E_r = E + r \) for \(r \in \mathbb{Q} = \mathbb{Q} \cap [-1,1] \). The sets \(E_r \) are measurable, disjoint since the sets \(E_r \subset N_r \) and the
sets N_r are disjoint, and $\bigcup_{r \in Q} E_r \subset \bigcup_{r \in Q'} N_r \subset [-1, 2]$. Hence

$$m\left(\bigcup_{r \in Q'} E_r\right) = \sum_{r \in Q'} m(E_r) = \sum_{r \in Q'} m(E) \leq 3.$$

This implies that $m(E) = 0$, contradiction.

(b) Since $\sum_{r \in Q} N_r = \mathbb{R}$, one has $E = \bigcup_{r \in Q} E \cap N_r$. By countable sub-additivity of m^*, $m^*(E) \leq \sum_{r \in Q} m(E \cap N_r)$ so that there is $r \in Q$ for which $m^*(E \cap N_r) > 0$. If $m^*(E \cap N_r)$ is measurable, then since $E \cap N_r \subset N_r$, (a) implies that $m(E \cap N_r) = 0$, contradiction.

(c) Assume $m^*(N^c) < 1$. Take $0 < \varepsilon < 1 - m^*(N^c)$. Then there exists an open set O such that $N^c \subset O$ and $m(O) < m^*(N^c) + \varepsilon < 1$. Then $O^c \subset N$. Since O^c is measurable, (a) implies that $m(O^c) = 0$. However, $[0, 1] \subset O \cup O^c$ and $m(O) < 1$. So, $m(O^c) > 0$, contradiction. If $m^*(N \cup N^c) = m^*(N) + m^*(N^c)$, then $m^*(N) = 0$ which implies that N is measurable, contradiction.