Problem 1. Let $f(x, y) = \frac{1}{(y+1)^2}$ and let

$A = \{(x, y) \in \mathbb{R}^2 | x > 0 \text{ and } x < y < 2x\}$,

$B = \{(x, y) \in \mathbb{R}^2 | x > 0 \text{ and } x^2 < y < 2x^2\}$.

Show: $\int_A f$ does not exist and $\int_B f$ exists. Find the value of $\int_B f$.

Solution: The set A. It suffices to find a sequence (T_N) of compact Jordan measurable subsets T_N of A such that $A = \bigcup_{N \geq 1} T_N$ and $\int_{T_N} f \to \infty$. For example, let T_N be a triangle bounded by the straight lines $y = x + 1/(2N)$, $y = 2x - 1/(2N)$ and the vertical line $y = N$. Then T_N has vertices at the points $(1/N, 3/2N)$, $(N, N + 1/(2N))$ and $(N, 2N - 1/(2n))$. The triangle $T = T_N$ is contained in the rectangle $Q = I \times J$ where $I = [1/N, N]$ and $J = [3/(2N), 2N - 1/(2N)]$. Using the Fubini’s theorem,

$$\int_T f = \int_Q f_T = \int_1^N \left[\int_{x+1/(2N)}^{2x-1/(2N)} \frac{1}{(y+1)^2} dy \right] dx$$

$$= \int_{1/N}^N \left[\frac{1}{x + 1 + 1/(2N)} - \frac{1}{2x + 1 - 1/(2n)} \right] dx$$

$$= \ln(x + 1 + 1/(2N))|_{1/N}^N - \frac{1}{2} \ln(2x + 1 - 1/(2n))|_{1/N}^N$$

from which it follows that $\int_T f \to \infty$ as $N \to \infty$.

The set B. Take for example sets P_N defined as follows. let P_N the region bounded by the parabolas $y = x^2 + 1/(2N)$, $y = 2x^2 - 1/(2N)$ and the vertical line $y = \sqrt{N}$. This line intersects parabolas at $(\sqrt{N}, N + 1/(2N))$ and $\sqrt{N}, 2N - 1/(2N)$ and the parabolas intersect at the point $(1/\sqrt{N}, 3/(2N))$. The region P_N is a subset of the rectangle $I \times J$ where $I = [1/\sqrt{N}, \sqrt{N}]$ and $J = [3/(2n), 2N - 1/(2N)]$. Clearly, P_N is compact Jordan measurable and $B = \bigcup_{N \geq 1} P_N$. Write $P = P_N$. Then by
the Fubini’s theorem,
\[\int f \, dx = \int_{\mathbb{R}} \int f \, dy = \int_{1/\sqrt{N}}^{\sqrt{N}} \left[\frac{1}{x^2 + 1 + 1/(2N)} - \frac{1}{2x^2 + 1 - 1/(2N)} \right] \left[\frac{1}{\sqrt{1 + 1/(2N)}} \arctan \left(\frac{x}{\sqrt{1 + 1/(2N)}} \right) \right]^{\sqrt{N}}_{1/\sqrt{N}} \]
\[= \frac{1}{\sqrt{1 + 1/(2N)}} \arctan \left(\frac{\sqrt{2x}}{\sqrt{1 - 1/(2N)}} \right) \left|^{\sqrt{N}}_{1/\sqrt{N}} \right. \]

Evaluating the function at the end points and taking the limit as \(N \to \infty \) we get that \(\int f \) converges to \((1 - \sqrt{2})\pi/2\). So \(f \) is integrable over \(B \) and \(\int_B f = (1 - \sqrt{2})\pi/2 \).

Problem 2. Let \(U = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\} \) and let \(f(x, y) = \frac{1}{(x^2 + y^2)^{1/2}} \) for \((x, y) \neq (0, 0)\). Determine if the function \(f \) is integrable over \(U \setminus \{(0,0)\} \) and over \(\mathbb{R}^2 \setminus U \).

Solution: Let \(A_{a,b} = \{(x, y) \in \mathbb{R}^2 \mid a < |(x, y)| < b\} \). For \(A = (a, b) \times (0, 2\pi) \), let \(g : A \to B = g(A) \) be defined by \(g(r, \varphi) = (r \cos \varphi, r \sin \varphi) \). Then \(B = A_{a,b} \setminus L \) where \(L = \{(x, y) \mid y = 0 \text{ and } x \geq 0\} \). Moreover, \(g \) is one-to-one on \(A \) and \(Dg(r, \varphi) = r > 0 \) so that \(g \) is a diffeomorphism between \(A \) and \(B \). By the change of variables theorem (using the fact that \(f \) is continuous for \((x, y) \neq 0\), that the boundary of \(A_{a,b} \) and \(L \) have measure 0 in \(\mathbb{R}^2 \)) and the Fubini’s theorem,

\[\int_{A_{a,b}} f = \int_{A_{a,b}} f = \int_{B} f = \int_{g(A)} f = \int_{A} (f \circ g) \, |\det Dg| \]
\[= \int_{A} \frac{1}{r^2} d\varphi = 2\pi \int_{a}^{b} \frac{1}{r^2} dr = 2\pi \left(\frac{1}{a} - \frac{1}{b} \right) \]

The set \(U \). Let \(C_N = \{(x, y) \in \mathbb{R}^2 \mid 1/N \leq |(x, y)| \leq 1 - 1/N \} \), then \(C_N \) is compact, Jordan measurable, and \(U = \bigcup_{N \geq 1} C_N \). Then by the above calculations

\[\int_{C_N} f = 2\pi \left(\frac{1}{1/N} - \frac{1}{1 - 1/N} \right) = 2\pi \left(N - \frac{N}{N - 1} \right) \to \infty \]

showing that \(f \) is not integrable on \(U \).

The set \(\mathbb{R}^2 \setminus U \). Consider \(C_N = \{(x, y) \mid 1 + 1/N \leq |(x, y)| < N\} \). Then \(C_N \) is compact, Jordan measurable, and \(\mathbb{R}^2 \setminus U = \bigcup_{N \geq 1} C_N \), and

\[\int_{C_N} f = 2\pi \left(\frac{1}{1 + 1/N} - \frac{1}{N} \right) = 2\pi \left(\frac{N}{1 + N} - \frac{1}{N} \right) \to 1 \]

so that \(f \) is integrable on \(\mathbb{R}^2 \setminus U \) and \(\int_{\mathbb{R}^2 \setminus U} f = 1 \).

Problem 3. Let \(\pi_k : \mathbb{R}^n \to \mathbb{R} \) be the projection onto the \(k \)th factor, i.e., \(\pi_k(x) = x_k \).
If \(S \) is a bounded Jordan-measurable subset of \(\mathbb{R}^n \) with non-zero volume, define the centroid \(c(S) \) of \(S \) to be the point in \(\mathbb{R}^n \) whose \(k \)th coordinate is equal to

\[c(S)_k = \frac{1}{v(S)} \int_s \pi_k \]
(a) S is said to be symmetric with respect to the subspace $x_k = 0$ if $g(S) = S$ where $g : \mathbb{R}^n \to \mathbb{R}^n$ is defined by

$$g(x_1, \ldots, x_n) = (x_1, \ldots, x_{k-1}, -x_k, x_{k+1}, \ldots, x_n).$$

Show that if S is symmetric with respect to the subspace $x_k = 0$, then $c(S)_k = 0$.

(b) Let $U = \{(x, y, z) \in \mathbb{R}^3 | z > 0$ and $x^2 + y^2 + z^2 < r^2\}$. Use the spherical coordinates and the change of variables theorem to compute $c(U)$.

Solution: (a) This follows from the change of variables theorem. First note that $\pi_k \circ g = \pi_k$ and that $Dg(x)$ is diagonal matrix with all entries equal to 1 except the kth diagonal entry is equal to -1. So, $|Dg| = 1$ and

$$c(S)_k = \frac{1}{v(S)} \int_S \pi_k = \frac{1}{v(S)} \int_{g(S)} \pi_k = \frac{1}{v(S)} \int_S (\pi_k \circ g) |\det Dg| = -\frac{1}{v(S)} \int_S \pi_k = -c(S)_k.$$

Hence $c(S)_k = 0$ as claimed.

(b) The set U is symmetric with respect to subspaces $x = 0$ and $y = 0$. Hence $c(U)_x = 0$ and $c(U)_y = 0$. To calculate $c(U)_z$ we use the change of variables theorem and the spherical coordinates. Let $A = (0, r) \times (0, \pi/2) \times (0, 2\pi)$ and

$$g : A \to \mathbb{R}^3 \text{ be defined by } g(r, \varphi, \psi) = (\rho \sin \varphi \cos \psi, \rho \sin \varphi \cos \psi, \rho \cos \varphi).$$

Then $g(A) = B := \{(x, y, z) | x^2 + y^2 + z^2 < r^2$ and $z > 0\} \setminus L$, where $L = \{(x, y, z) \in \mathbb{R}^3 | y = 0, x \geq 0\}$, is open, $g : A \to B$ is one-to-one and $Dg(\rho, \varphi, \psi) = \rho^2 \sin \varphi > 0$ on A. So, g is a diffeomorphism. Using $v(U) = v(B^3(r))/2 = 2\pi r^3/3$ (see Problem 5), the change of variables theorem, we find that

$$c(U)_z = \frac{1}{v(U)} \int_U \pi_z = \frac{3}{2\pi r^3} \int_A (\pi_z \circ g) |\det Dg| = \frac{3}{2\pi r^3} \int_A \rho^3 \cos \varphi \sin \varphi$$

$$= \frac{3 \cdot 2\pi \cdot r^4}{4 \cdot 2\pi} \int_0^{\pi/2} \cos \varphi \sin \varphi d\varphi = \frac{3r}{8}.$$
Problem 4. Let A be an bounded open Jordan-measurable subset of \mathbb{R}^{n-1} and let $p = (p_1, \ldots, p_n) \in \mathbb{R}^n$ with $p_n > 0$. Define the subset S of \mathbb{R}^n by setting

$$S = \{x \in \mathbb{R}^n \mid x = (1-t)a + tp \text{ where } t \in (0,1) \text{ and } a \in A \times \{0\}\}.$$

(a) Define a diffeomorphism g between S and $A \times (0,1)$.

(b) Calculate the volume $v(S)$ in terms of the volume $v(A)$ of A.

(c) Express the centroid $c(S)$ in terms of the centroid of $c(A)$ and p and show that $c(S)$ lies on the line segment connecting $(c(A),0)$ and p.

Solution: (a) We write $a = (b,0)$ with $b \in A$ for a point $a \in A \times \{0\}$. Then define $g : A \times (0,1) \to S$ by $g(b,t) = (1-t)(b,0) + tp = (1-t)a + tp$. Clearly, g is onto. If $g(b,t) = g(b,s)$, then $(1-t)(b,0) + tp = (1-s)(b,0) + sp$. Then $tp_n = sp_n$ implying that $t = s$ and this in turn implies that $b = \tilde{b}$. So, g is one-to-one. g is also of class C^∞. Moreover,

$$Dg(b,t) = \begin{bmatrix}
1 - t & 1 - t & \ldots & 1 - t & p_1 - a_1 \\
1 - t & 1 - t & \ldots & 1 - t & p_2 - a_2 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
1 - t & 1 - t & \ldots & 1 - t & p_{n-1} - a_{n-1} \\
0 & 0 & \ldots & 0 & p_n
\end{bmatrix}$$

so that $\det Dg(b,t) = (1-t)^{n-1}p_n > 0$. Consequently, the inverse g^{-1} is also of class C^∞. Summing up, g is a C^∞-diffeomorphism.

(b) $v(S) = \int_S 1 = \int_{g(A\times(0,1))} 1 = \int_{A\times(0,1)} |\det Dg|$

$$= \int_{A\times(0,1)} (1-t)^{n-1}p_n = p_nv(A) \int_0^1 (1-t)^{n-1} = \frac{p_n}{n}v(A).$$

(c) Using the change of the variables theorem and Fubini’s theorem, we calculate for $1 \leq k \leq n - 1$,

$$c(S)_k = \frac{1}{v(S)} \int_S \pi_k = \frac{1}{v(S)} \int_{g(A\times(0,1))} \pi_k = \frac{1}{v(S)} \int_{A\times(0,1)} \pi_k \circ g |\det Dg|$$

$$= \frac{1}{v(S)} \int_{A\times(0,1)} [(1-t)a_k + tp_k](1-t)^{n-1}p_n$$

$$= \frac{n}{v(A)} \int_{A\times(0,1)} (1-t)^n a_k + \frac{n}{v(A)} \int_{A\times(0,1)} t(1-t)^{n-1}p_k$$

$$= \frac{n}{n+1}c(A)_k + n \left(\frac{1}{n} - \frac{1}{n+1}\right)p_k = \frac{n}{n+1}c(A)_k + \left(1 - \frac{n}{n+1}\right)p_k$$

and

$$c(S)_n = \frac{1}{v(S)} \int_S \pi_n = \frac{1}{v(S)} \int_{g(A\times(0,1))} \pi_n = \frac{1}{v(S)} \int_{A\times(0,1)} \pi_n \circ g |\det Dg|$$

$$= \frac{n}{v(A)} \int_{A\times(0,1)} t(1-t)^{n-1}p_n = \left(1 - \frac{n}{n+1}\right)p_n$$

Hence

$$c(S) = \frac{n}{n+1}(c(A),0) + \left(1 - \frac{n}{n+1}\right)p.$$
Problem 5. Let $B^n(r)$ be a closed ball in \mathbb{R}^n of radius r and centered at 0.

(a) Show that $v(B^n(r)) = \alpha_n r^n$ where $\alpha_n = v(B^n(1))$.
(b) Calculate α_1 and α_2.
(c) Compute α_n in terms of α_{n-2}.
(d) Find the formula for α_n by considering two cases: n is odd and n is even.

Solution: (a) Consider $g : B^1(1) \rightarrow \mathbb{R}^n$ defined by $g(x) = rx$. Then $g(B^1(1)) = B^n(r)$ so that g is a diffeomorphism between $B^1(1)$ and $B^n(r)$ with $Dg(x) = r$. By the change of variables theorem,

$$v(B^n(r)) = \int_{B^n(r)} 1 = \int_{g(B^1(1))} 1 = \int_{B^1(1)} |\det Dg| = \int_{B^1(1)} r^n = r^n B^n(1).$$

(b) Since $B^1(1) = (-1, 1)^n$, $v(B^1(1)) = 2$. Let $A = (0, 1) \times (0, 2\pi)$ and $g : A \rightarrow \mathbb{R}^2$ be defined by $g(r, \phi) = (r \cos \phi, r \sin \phi)$. Then g is one-to-one, $B := g(A) = B^2(1) \setminus I$ where $I = \{(x, y) | x \geq 0 \text{ and } y = 0\}$. So $g(A)$ is open. In addition, $Dg(r, \phi) = r > 0$ on A. So g is a diffeomorphism between A and B and by the change of variables theorem and Fubini’s theorem,

$$\int_{B^2(1)} 1 = \int_A |\det Dg| = \int_A r = \int_{(0,2\pi)} \left[\int_{(0,1)} r ~d\phi \right] dr = \pi.$$

(c) For $z \in \mathbb{R}^n$ write $z = (x, y)$ where $x \in \mathbb{R}^{n-2}$ and $y \in \mathbb{R}^2$. Now if $z \in B^n(1)$, then $|z|^2 = |x|^2 + |y|^2 < 1$. Hence $|y| < 1$ implying that $y \in B^2(1)$ and $|x|^2 < 1 - |y|^2$ which implies that $x \in B^{n-2}(\sqrt{1 - |y|^2})$. Next note that $B^n(1) \subset Q \times I$ where $Q = [-1,1]^{n-2}$ and $I = [-1,1]^2$.

For every $y \in I^2$, then $\chi_{B^n(1)}(x, y) = 1$ for $y \in B^2(1)$ and if $y \notin B^2(1)$, then $\chi_{B^n(1)}(x, y) = 0$. So, $\chi_{B^n(1)}(\cdot, y)$ is integrable over Q and

$$\int_Q \chi_{B^n(1)}(x, y) dx = \begin{cases} 0 & y \notin B^2(1), \\ \left(1 - |y|^2\right)^{\frac{n-2}{2}} \alpha_{n-2} & y \in B^2(1). \end{cases}$$

So by the Fubini’s theorem

$$\int_Q \chi_{B^n(1)} = \int_{I^2} \left[\int_Q \chi_{B^n(1)}(x, y) dx \right] dy = (1 - |y|^2)^{\frac{n-2}{2}} \alpha_{n-2} \chi_{B^2(1)}$$

The integral on the right-hand side can be calculated using the change of variables theorem using $g : A = (0, 1) \times (0, 2\pi) \rightarrow \mathbb{R}^2$, $g(r, \phi) = (r \cos \phi, r \sin \phi)$. We have

$$\int_{B^2(1)} (1 - |y|^2)^{\frac{n-2}{2}} = \int_A (1 - r^2)^{n-2} dr d\phi = \pi \int_0^1 (1 - r^2)^{\frac{n-2}{2}} (2r) dr = \frac{2\pi}{n}.$$

So,

$$\alpha_n = \frac{2\pi}{n} \alpha_{n-2}.$$
(d) From (c) and \(\alpha_1 = 2 \) and \(\alpha_2 = \pi \) it follows that

\[
\alpha_{2k} = \frac{\pi^k}{k!} \quad \text{and} \quad \alpha_{2k+1} = \frac{2^{k+1}}{1 \cdot 3 \cdots (2k + 1)} \pi^k
\]