Problem 1. Let \(f : \mathbb{R}^n \to \mathbb{R}^n \) be defined by \(f(x) = |x|^2 \cdot x \). Show that \(f \) is of class \(C^\infty \), \(f \) is one-to-one and \(f(B_1(0)) = B_1(0) \). Show that the inverse function of \(f \) is not differentiable at 0.

Problem 2. Let \(g : \mathbb{R}^2 \to \mathbb{R}^2 \) be given by
\[
g(x, y) = (2ye^{2x}, xe^y),
\]
and let \(f : \mathbb{R}^2 \to \mathbb{R}^3 \) be given by
\[
f(x, y) = (3x - y^2, 2x + y, xy + y^3).
\]
(a) Show that there exist a neighborhood \(U \) of \((0, 1)\) and \(V \) of \((2, 0)\) such that \(g : U \to V \) is a bijection.
(b) Find \(D(f \circ g^{-1})(2, 0) \).

Problem 3. Let \(Q \) be a closed rectangle in \(\mathbb{R}^n \) and let \(f : Q \to \mathbb{R} \) be a bounded function. Prove:
(a) If \(f \) is Riemann integrable and \(f \) vanishes except on a set \(B \) having measure zero, then \(\int_Q f = 0 \).
(b) If \(f \) vanishes except on a closed set \(B \) having measure zero, then \(f \) is Riemann integrable and \(\int_Q f = 0 \).
(c) If \(f \) is Riemann integrable and \(f(x) > 0 \) for all \(x \in Q \), then \(\int_Q f > 0 \).

Problem 4. Show that if \(A \subset \mathbb{R}^n \) is compact and has measure 0 in \(\mathbb{R}^n \), then \(A \) has content 0 in \(\mathbb{R}^n \).

Problem 5. Let \(Q \) be a closed rectangle in \(\mathbb{R}^n \) and let \(f : Q \to \mathbb{R} \). The graph of \(f \) is defined by
\[
G = \{(x, y) \in \mathbb{R}^{n+1} | y = f(x)\}.
\]
Show that if \(f \) is continuous, then \(G \) has measure zero in \(\mathbb{R}^{n+1} \).