The Optimal Assignment Problem

Task: Given a weighted complete bipartite graph \(G = (X \cup Y, X \times Y) \), where edge \(xy \) has weight \(w(xy) \), find a matching \(M \) from \(X \) to \(Y \) with maximum weight.

In an application, \(X \) could be a set of workers, \(Y \) could be a set of jobs, and \(w(xy) \) could be the profit made by assigning worker \(x \) to job \(y \).

By adding virtual jobs or workers with 0 profitability, we may assume that \(X \) and \(Y \) have the same size, \(n \), and can be written as \(X = \{x_1, x_2, \ldots, x_n\} \) and \(Y = \{y_1, y_2, \ldots, y_n\} \).

Mathematically, the problem can be stated: given an \(n \times n \) matrix \(W \), find a permutation \(\pi \) of \(\{1, 2, 3, \ldots, n\} \) for which

\[
\sum_{i=1}^{n} w(x_i y_{\pi(i)})
\]

is a maximum.

Such a matching from \(X \) to \(Y \) is called an optimal assignment.

Definition: A feasible vertex labeling in \(G \) is a real-valued function \(l \) on \(X \cup Y \) such that for all \(x \in X \) and \(y \in Y \),

\[
l(x) + l(y) \geq w(xy).
\]

Such labelings may be conveniently written beside the matrix of weights.

It is always possible to find a feasible vertex labeling. One way to do this is to set all \(l(y) = 0 \) for \(y \in Y \) and for each \(x \in X \), take the maximum value in the corresponding row, i.e.

\[
l(x) = \max_{y \in Y} w(xy) \quad \text{for } x \in X
\]

\[
l(y) = 0 \quad \text{for } y \in Y
\]

If \(l \) is a feasible labeling, we denote by \(G_l \) the subgraph of \(G \) which contains those edges where \(l(x) + l(y) = w(xy) \), together with the endpoints of these edges. This graph \(G_l \) is called the equality subgraph for \(l \).

Theorem. If \(l \) is a feasible vertex labeling for \(G \), and \(M \) is a complete matching of \(X \) to \(Y \) with \(M \subseteq G_l \), then \(M \) is an optimal assignment of \(X \) to \(Y \).

Proof: We must show that no other complete matching can have weight greater than \(M \). Let any complete matching \(M' \) of \(X \) to \(Y \) be given. Then

\[
w(M') = \sum_{xy \in M'} w(xy)
\]

\[
\leq \sum_{xy \in M'} (l(x) + l(y)) \quad \text{(feasibility of } l)\)
\]

\[
= \sum_{xy \in M} (l(x) + l(y)) \quad \text{(all the } l(x) \text{ and } l(y) \text{ are summed in either matching)}
\]

\[
= \sum_{xy \in M} w(xy) \quad \text{since } M \subseteq G_l
\]

\[
= w(M).
\]
Thus the problem of finding an optimal assignment is reduced to the problem of finding a feasible vertex labeling whose equality subgraph contains a complete matching of X to Y.

The Kuhn-Munkres Algorithm (also known as the Hungarian method).

Start with an arbitrary feasible vertex labeling l, determine G_l, and choose an arbitrary matching M in G_l.

1. If M is complete for G, then M is optimal. Stop. Otherwise, there is some unmatched $x \in X$. Set $S = \{x\}$ and $T = \emptyset$.

2. If $J_{G_l}(S) \neq T$, go to step 3. Otherwise, $J_{G_l}(S) = T$. Find

$$\alpha_l = \min_{x \in S, y \in T^c} \{l(x) + l(y) - w(xy)\}$$

where T^c denotes the complement of T in Y, and construct a new labeling l' by

$$l'(v) = \begin{cases}
 l(v) - \alpha_l & \text{for } v \in S \\
 l(v) + \alpha_l & \text{for } v \in T \\
 l(v) & \text{otherwise}
\end{cases}$$

Note that $\alpha_l > 0$ and $J_{G_{l'}}(S) \neq T$. Replace l by l' and G_l by $G_{l'}$.

3. Choose a vertex y in $J_{G_l}(S)$, not in T. If y is matched in M, say with $z \in X$, replace S by $S \cup \{z\}$ and T by $T \cup \{y\}$, and go to step 2. Otherwise, there will be an M-alternating path from x to y, and we may use this path to find a larger matching M' in G_l. Replace M by M' and go to step 1.