Math
484. March 28, 2012. Midterm 2.
5 problems, 15 pts each. Write your name here
____________________________ and on the other side.
Write down how you got your answer.
1 Solve the
linear program where all xi ≥ 0:
|
x1 |
x2 |
-2 |
-x4 |
|
|
1 |
-2 |
3 |
4 |
= x3 |
|
1 |
2 |
1 |
-3 |
= -x5
|
|
2 |
2 |
-3 |
0 |
--> min
|
|
x1 |
x2 |
x4 |
1 |
|
|
1 |
-2 |
-4 |
-6 |
= x3 |
|
-1 |
-2 |
-3 |
2 |
= x5
|
|
2 |
2 |
0 |
6 |
--> min
|
According to Simplex Method, Phase 1, we pivot on 1 and obtain
|
x3 |
x2 |
x4 |
1 |
|
|
1 |
2 |
4 |
6 |
= x1 |
|
-1 |
-4 |
-7 |
-4 |
= x5
|
|
2 |
6 |
8 |
18 |
--> min
|
2. Check
whether x1 = 0, x2 =0, x3 =4, x4 = 5/2, x5 = 0, x6 =0, x7 =6,
x8 = 0 is an optimal solution for the LP written in a standard tableau:
|
x1 |
x2 |
x3 |
x4 |
x5 |
1 |
|
|
1 |
-2 |
1 |
-4 |
5 |
6 |
= x6 |
|
-1 |
2 |
-1 |
4 |
-5 |
0 |
= x7 |
|
2 |
1 |
0 |
2 |
1 |
-5 |
= x8 |
|
2 |
0 |
1 |
-1 |
3 |
1 |
-> min |
Solution. It is easy to check that all 3 equations hold and that all xi are nonnegative. So the
proposed solution is feasible. Let yi be the dual variable for xi. We are looking for the complementary optimal solution so
y3 = y4 = y7 = 0.
|
x1=0 |
x2=0 |
x3=4 |
x4=5/2 |
x5=0 |
1 |
|
|
| -y6 |
1 |
-2 |
1 |
-4 |
5 |
6 |
= x6=0 |
| -y7=0 |
-1 |
2 |
-1 |
4 |
-5 |
0 |
= x7= 6 |
| -y8 |
2 |
1 |
0 |
2 |
1 |
-5 |
= x8 = 0 |
| 1 |
2 |
0 |
1 |
-1 |
3 |
1 |
-> min |
| =y1 |
=y2 |
=y3=0 |
=y4=0 |
=y5 |
->maz |
3-4. Solve
transportation problems:
|
2 |
1 |
3 |
2 |
1 |
2 |
1 |
2 |
1 |
9 |
|
1 |
2 |
3 |
1 |
1 |
3
|
1 |
3 |
1 |
8 |
|
2 |
2 |
1 |
3 |
1 |
1 |
3 |
1 |
2 |
9 |
|
5 |
5
|
1 |
1 |
2 |
1 |
2 |
3 |
4 |
8 |
|
6 |
1 |
6 |
1 |
6 |
1 |
6 |
1 |
6 |
dem \ sup |
|
3 |
1 |
3 |
2 |
1 |
2 |
1 |
2 |
5
|
9 |
|
3
|
3
|
3 |
5 |
1 |
1 |
3
|
3 |
1 |
8 |
|
2 |
3
|
1 |
3 |
1 |
1 |
3 |
1 |
2 |
9 |
|
2 |
3 |
5
|
1 |
2 |
1 |
2 |
1 |
2 |
8 |
|
6 |
1 |
6 |
1 |
6 |
1 |
6 |
1 |
6 |
dem \ sup |
Solutions. 3.
| 1 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
||
| 0 |
2 (1) |
1 1 |
3 (3) |
2 (2) |
1 (1) |
2 (2) |
1 6 |
2 (2) |
1 2 |
9 |
| 0 |
1 6 |
2 (1) |
3 (3) |
1 (1) |
1 (1) |
3 (3) |
1 (0) |
3 (3) |
1 2 |
8 |
| -1 |
2 (0) |
2 (0) |
1 (-1) |
3 |
1 6 |
1 |
3 2 |
1 1 |
2 2 |
9 |
| -1 |
5 (3) |
5 (3) |
1 6 |
1 1 |
2 (1) |
1 1 |
2 0 |
3 (2) |
4 (3) |
8 |
|
6 |
1 |
6 |
1 |
6 |
1 |
6 |
1 |
6 |
dem \ sup |
4.
3 |
1 1 |
3 |
2 |
1 2 |
2 |
1 6 |
2 |
5
|
9 |
|
3
|
3
|
3 |
5 |
1 2 |
1 |
3
|
3 |
1
6 |
8 |
|
2 |
3
|
1 6 |
3 |
1 2 |
1 1 |
3 |
1 |
2 |
9 |
|
2 6 |
3 |
5
|
1 1 |
2 |
1 |
2 |
1 1 |
2 |
8 |
|
6 |
1 |
6 |
1 |
6 |
1 |
6 |
1 |
6 |
dem \ sup |
This ios optimal because we use the minimal cost in every column. min = 40.
5. Solve job
assignment problem
|
1 |
2 |
3 |
1
|
2 |
|
2 |
3 |
5 |
1 |
2 |
|
3 |
2 |
1 |
3 |
1 |
|
5 |
3 |
3
|
5 |
1 |
|
1 |
5 |
2 |
1 |
0 |
|
1 |
2* |
3 |
1
|
2 |
|
2 |
3 |
5 |
1* |
2 |
|
3 |
2 |
1* |
3 |
1 |
|
5 |
3 |
3
|
5 |
1* |
|
1* |
5 |
2 |
1 |
0 |