Midterm 1 Oct 9, 2014 Math 484.002  25 questions, 3 pts each.  

Name  Dr.V

No electronics is allowed.   Write both answers and details.

Write only answers on scantron. Return this page and the scantron. 

If you do not like given answers, write this and choose E on scantron.


Answers are in boldface.  Details are not given.


1. The equation ax +by = c for  x, y with given numbers a,b,c

(A) is not an equation, (B) is not linear,  (C) always have a solution, (D) always has infinitely many solutions.


2.   x = y     is

(A) a linear constraint for x, y,  (B) a linear inequality   for x, y,

(C) an affine function of x, y,  (D) an equation for x, y which cannot be solved,


3. The linear program  x+2y -> max subject to x+y = 1, x ≥ 0, y ≥ 0

(A) is unbounded,  (B) is infeasible,  (C)  has many optimal solutions, (D) has optimal value 2.


4. The optimal value for the linear program   ax + b  -> max, 0 ≤  x  ≤ 1  with an unknown  x and given numbers  a, b 

(A)  it is not a linear program , (B)   is unbounded, (C) is a+ b,   (D) is b or a+b.


5. The mathematical program x/y -> min subject to x >  1, y > 0 with two unknowns x, y

(A) is a linear program, (B) is infeasible, (C) has an optimal solution,(D) is unbounded.


6. The mathematical program  x -> max,  x  ≤ 1

(A) is not a linear program, (B) is infeasible, (C) has an optimal solution,

(D) is unbounded.


7. The answer to the mathematical program   xy  -> min,  x+ y   =  8 is

(A) unbounded,  (B) infeasible,  (C) max = 16 at x = 4, y = 4,

(D) min =16 at x = 4, y = 4.


8. The minimal total time for the job assignment problem

3 2 1 0

3 0 2 1

2 5 3 0                                                                                  

0 1 2 1

is    (A) 0,  (B) 1,  (C) 2, (D) 3.



9. For each  number  t, the equation     (t-1)x= t2- 1  for unknown x

(A) is not linear, (B) has a solution, (C) is unbounded, (D) has many solutions.


10. 0 = 2  if  0 = 1.   A) True,  B) False.


11. x > 0 and  y > 0 only if  xy > 0.   A) True,  B) False


12. The linear program given by a  standard tableau with the matrix

-1

-2

0

-3

0

-4

0

-2

0

1

0

-1

0

2

-3

(A) is infeasible, (B) is unbounded,  (C) has an optimal solution,

(D) has only 2 linear constraints.



13. The linear program given by a  standard tableau with the matrix

-1

-2

0

-3

0

-4

0

-2

0

-1

0

1

0

2

-3

(A) is infeasible, (B) is unbounded,  (C) has an optimal solution,

(D) has only 2 linear constraints.


14. The linear program given by a  standard tableau with the matrix

-1

-2

-3

3

0

1

0

2

-6

-1

0

-1

0

-1

-3

(A) is infeasible, (B) is unbounded,  (C) has an optimal solution,

(D) has only 2 linear constraints.





































15. The linear program given by a  standard tableau with the matrix

-1

-2

0

-3

0

-4

-1

2

0

-1

0

-1

2

2

-3

(A) is infeasible, (B) is unbounded, (C) has an optimal solution,

(D) has -4 as the optimal value.


16. The standard tableau

x1 x2 x3 1  

0   0   0   -1 -> max

(A) is optimal, (B) has a bad column, (C) has a bad row, (D) is not standard.


17. The standard tableau

1  

1 = x1

0 = x2

-1 -> min

(A) is optimal. (B) has a bad column, (C) has a bad row, (D) is not standard.



18. Pivoting the tableau

x     -y  

2*   3 = -z

produces the tableau

A) z    -y                    B)  x         y                      C) x    y      

   1/2 -3/2 = -x                 2       -3/2 = z                  1/2  3 = z            


19.The number of choices for the pivot entry in the standard tableau

1   2   3    -1    0   

0  -1   1    -3   -3

1  -1   2    -3    4

which are consistent with the simplex method. (A) 0, (B) 1, (C)  2, (D) 3.


20. The number of choices for the pivot entry in the standard tableau

1   2    -3    -1   0   

0  -1     1    -3   3

-1  -1   -2     3   4

which are consistent with the simplex method. (A) 0, (B) 1, (C)  2, (D) 3.


21.The system x+ 2y = 3, 4x + 8y = 12  for x,y

(A) has no solutions, (B) has exactly one solution, (C) has infinitely many solutions.


22.  For any  row   x = [a, b]    of numbers,    x ≥ 0 or -x ≥ 0  provided that 0 = 0   A) True  B) False


23. The linear program given by the row tableau

a  -b   c     -d  -3

1  - 2   3    -1   0   = e

0  -1    1    -3   0 =  -f

1  -1    2    -3   4 -> min

with 6 unknowns  a,b,c,d,e,f ≥ 0  has optimal value

(A) 12,  (B) -4/3,  (C) , (D) -∞.


24.  For any number  x,  if    0 = 0  then    x ≥ 0 or x ≤ 0.     A) True   B) False


25. The set of constraints x -  y > 2, 2x + 3y > 4 implies that

A) 4x + 5y ≥  9,  B) x ≥ 2,   C) y ≥ 1,   D) x ≤ 0.