M	ATH	251
TVI.		201

EXAMINATION I

February 18, 1998

Name	ID #	Section #
Instructor		
Show all your work for each	of the partial-credit problems.	
		Points awarded
1. (16 pts)		
2. (17 pts)		
3. (17 pts)		
4. (17 pts)		-
5. (16 pts)		
6. (17 pts)		· · · · · · · · · · · · · · · · · · ·
		Total Points:

- 1. (16 points)
 - a) Find the general solution of the equation

$$y' = 4y^2(x - x^3).$$

b) Find the general solution of the differential equation

$$xy' + y = xe^x$$

- 2. (17 points) There are 200 liters of pure water in a tank. Water containing 50 grams/liter of dye is entering the tank at a rate of 2 liters/min and the mixture is allowed to flow out of the tank at the same rate.
 - a) Find the quantity of dye at any time t. (Write down the equation that describes the process and solve it. Show all your work.)
 - b) Find the limit value of the quantity when $t \to \infty$.
 - c) Find the time when the quantity of dye in the solution reaches 50% of its limit value.

- 3. (17 points) A ten kilogram ball is thrown down from a cliff with an initial velocity of 1 meter per second. Air resistance acts on the ball with a force equal to 7 times the speed. If the acceleration due to gravity is 9.8 meters/second², find:
 - a) The velocity at time t.
 - b) The distance fallen by time t.
 - c) The limiting velocity as $t \to \infty$.

4. (17 points) Solve the following initial value problem:

$$y'' - 4y' + 20y = 0$$
; $y(2) = 0$, $y'(2) = 8$

5. (16 points) Solve the following initial value problem:

$$y'' + y' - 12y = 0; \quad y(0) = 3, \quad y'(0) = -5$$

6. (17 points) Find a second, linearly independent, solution of the differential equation $x^2y'' - (x^2 + 2x)y' + (x + 2)y = 0$ given that $y_1 = xe^x$ is a solution.