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Abstract

Branching processes are a well-established tool in mathematical biology
used to study the dynamics of rarefied populations where agents act indepen-
dently and small stochastic density-independent changes in population sizes.
However, they are often avoided by non-mathematicians because of their re-
liance on generating functions. Generating functions are powerful computa-
tional aids but are often difficult to motivate. In this paper, I review branching
process theory using a non-commuting random variable description of multi-
plication as mnemonic for generating functions. Starting from the elementary
definition of multiplication, I show how uncertainty leads to a natural gen-
eralization of integer multiplication without the commutative property, and
how this in-turn is connected to the well-established study of generating func-
tions. Non-commuting random-variable methods are described in detail and
illustrated using examples.

1 Introduction

Branching process theory is one of the oldest [Galton, 1889] and richest [Ulam,
1990, Harris, 1963, Mode, 1971, Athreya and Ney, 1972, Kimmel and Axelrod, 2002,
Macken and Perelson, 1985, Haccou et al., 2005, Dorman et al., 2004] topics in
mathematical population biology. A branching process is a stochastic process in
which all individuals reproduce randomly, independent of interactions with other
individuals. Originally motivated by problems concerning the extinction of surnames
in Europe, branching process theory now plays a role in contemporary biology fields
as diverse as carcinogenesis [Meza et al., 2008], network theory [Newman et al., 2001],



evolution [Reluga et al., 2007], and botany [Loi and Cournede, 2008, Prusinkiewicz
et al., 2007].

Despite its power and pedigree, branching process methods are not as widely
employed by researchers as they could be. One reason for the lack of employment may
be that the domains of application for branching process methods are smaller than the
domains for other methods like calculus, matrix algebra, or graph theory. Another
possible reason for the neglect of branching processes is that their mathematical
properties are not simple enough to be covered in the core college mathematics
curriculum.

The study of branching processes usually revolves around mathematical objects
called probability generating functions that represent the probabilities or expecta-
tions of different events. Probability generating functions can make certain complex
calculations trivial. However, they are usually formulated in terms of “dummy” vari-
ables that have no obvious motivations, and are more naturally investigated in terms
of moment statistics rather than common cumulant statistics like variance and skew.

Such pedagogical barriers to the adoption of computational tools are not un-
known. In Principia Mathematica [Newton, 1686], for instance, Newton presented
geometric constructions for many results he is believed to have obtained using cal-
culus. Today, few students can repeat Newton’s geometric calculations, but many
can get those results using calculus. Similarly, actuarial calculations were commonly
conducted using life-tables before Alfred Lotka introduced the use of matrix algebra
[Caswell, 2001]. Today, matrix algebra is common in biology. It’s applications include
the growth of stage-structured populations, covariance matrices, and Markov-process
descriptions of genetic mutation. Branching processes are not as powerful as either
calculus or matrices, but are useful for some problems. An alternative pedagogical
approach to branching processes may facilitate their wider use.

In this paper, I will present a review of branching process theory that highlights
the algebraic structure of branching processes in terms of non-commuting random
variables ( NCRVs ), and shows how this algebraic structure can be interpreted
directly in terms of both modelling concepts and cumulant generating functions. The
paper is intended for mathematical-biology graduate students seeking an alternative
introduction to branching processes. Almost all of the mathematical results are
classical and have been published elsewhere. The original contribution of this paper
is the interpretation of branching processes in terms of multiplication of random
variables. First, we investigate the concept of multiplication under uncertainty. The
properties of multiplication under uncertainty are then shown to naturally coincide
with the rules of cumulant generating function algebra. This coincidence is used to
derive some standard results.



2 Non-commuting random variables

After learning addition, elementary school students in the United States learn
how to multiply numbers. Multiplication, as we first learn, is repeated addition.
Suppose we have a tree with X = 3 tree branches and each branch has Y = 5 apples.
How many apples do we have in total? Well,

X x'Y = 3 branches x 5 apples per branch =5+ 5+ 5 = 15 apples. (1)
In the same way,
4 branches x 5 apples per branch =5+ 5+ 5 + 5 = 20 apples. (2)

Repeated addition becomes tedious, however, as numbers become large. Soon, stu-
dents begin to memorize their multiplication tables for numbers 1 to 10. At this
point, students start to forget about order. It doesn’t matter if we have 3 branches
with 5 apples each or 5 branches with 3 apples each. Either way, 3 x5=5x3=15
apples in total. The clever student may point out that this isn’t quite true, since
we have a different number of branches in the two cases, but such mild protests
seldom can stand against the lock-step of common curricula. As students move on
to more advanced concepts like fractions, decimal numbers, and complex numbers,
the fundamental definition given in Eq. (1) fades into the background.

Now, suppose that (as is almost always the case) there is some uncertainty about
the number of branches, and the number of apples on each branch. For instance,
suppose that there is an 80 percent chance of the tree having 3 branches, but a 10
percent chance that there are 2 branches and a 10 percent change that there are 4
branches. And suppose that each branch has equal probability of having 4, 5, or 6
apples. How many apples in total are there?

Obviously, this question cannot be completely answered with a single number.
The number of branches and the number of apples per branch are uncertain; they
are “random variables”. We might guess that there should be about 15 apples in
total, but there might be as few as 2 x 4 = 8 apples or as many as 4 X 6 = 24 apples.

Experimentally inclined readers might throw some dice to gain some intuition.

1. Obtain 1 ten-sided die with sides numbered 1 to 10, and 4 3-sided dice with
sides numbered 4,5, and 6.

2. Roll a 10-sided die.

3. If the ten-sided die shows 2 or 4, roll 2 or 4 3-sided dice respectively. Otherwise,
roll 3 3-sided dice.



4. Add up all the 3-sided dice to get a guess at the total number of apples.

Repeating this sequence numerous times physically or in pseudorandom-number sim-
ulations, we can get a histogram for the likelihoods of various outcomes.

There is a mathematical calculation that can precisely express our uncertainty
about the total number of apples if we know the uncertainty in the number of
branches and the number of apples per branch. For the moment, we will post-
pone explanation of the calculation, but its result is shown in Figure 1A. The most
likely number of apples is 15, and all of the weight of the distribution is clustered
tightly around the maximum. If there are not 15 apples, our next best guesses would
be 14 or 16 apples.

But what if the numbers and their uncertainty are reversed? Suppose a branch
contains 3 apples 80 percent of the time, 2 apples 10 percent of the time, and 4 apples
10 percent of the time, while there is a one-third chance of having 4, 5, or 6 branches.
In this case, we still expect there to be about 15 apples in total with no more than
24 and no fewer than 8, but our uncertainty is distributed in a different manner than
before. Our uncertainty is now concentrated in the number of branches instead of
the number of apples per branch. 12 and 18 are our next-to-best guesses now. While
the graph of the probabilities in the preceding example had a single peak (Figure
1A), this example has 3 strongly-separated peaks (Figure 1B). Thus, reversing the
order of multiplication has significantly altered the nature of our uncertainty.

These heuristics can easily be turned into mathematics. To begin with, we will re-
strict our number system to the counting numbers N =0,1,2,.... A non-commuting
random variable ( NCRV ) x represents a counting number whose value is uncertain'.
Associated with the NCRV z is a probability distribution p,(n) that describes the
probability that any given realization of the random variable has value n. The al-
gorithmically inclined can think of z as a call to a random number generator in a
computer program that returns independent samples from the counting number dis-
tribution p,. If all the weight of the distribution p, is on a single value, then x is
a deterministic variable that returns the same value for all realizations. Since each
realization of the variable z may give a different value, it is not always true that x
is equal to itself. But we can define a congruence equivalence relation where x ~ y
if and only if for all n, p,(n) = p,(n) for every n such that x ~ x despite sometimes
having x # z.

NCRVs can be added, of course. Suppose z, y, and z are NCRVs . (Through-out
this paper, all NCRVs will be assumed to be mutually independent.) Then z+y ~ z

IThe reason for this name will become apparent soon.



if and only if for every n,

p.(n) = Z Prob(zx =iandy =n —1i) = pr(i)py(n —1). (3)

=0

More interestingly, NCRVs can also be multiplied in the sense that

0 if =0,
zy = { . . (4)
Yoy if x>0

where each y; is an independent realization of y. Then it is a matter of algebra to
show that z ~ xy if and only if for all n,

p(n) =) [ )Y (Hm(%))] ()

=0 ni+ng..n;=n

where n; > 0 for all j. This is the formula used to draw Figure 1. Considering the
asymmetry in the definition of multiplication, it is not surprising that multiplication
of NCRVs with uncertainty is not commutative and zy ~ yx in general. A related
consequence is that

(x+y)z~xz+y2, (6)
but in general
z(z+y)»zx+ zy. (7)

Thus, NCRVs are right-distributive, but not left-distributive. In (6), both sides lead
to one realization of x and y and the same numbers of realizations of z. In (7), z and
y always have the equal numbers of realizations on the left but may have unequal
numbers of realizations on the right.

While the definitions of addition and multiplication are similar to those in com-
mon usage, we do not have corresponding division and subtraction operations. Unless
an NCRV z is deterministic, there are no additive inverses —x such that (—z)+z = 0
and no multiplicative inverses ! such that za=' = 1 = 27 'z. Uncertainty makes
it impossible to precisely invert an NCRV .

Thus, we find that the clever student is more insightful than we or they real-
ized. The property that F' x G = G x F' is called the commutative property of
multiplication. Commutativity is not a universal property of multiplication, but one
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Figure 1: Probability distribution for the total numbers of apples when we are un-
certain. The probability distributions of the products “3 x 5”7 (A) and “5 x 3”7 (B)
with uncertainty as described in the text. Both have the same expected value of 15,
but strikingly different shapes. The distribution of 3 x 5 has a unique peak, but the
distribution of 5 x 3 has 3 peaks. The distribution of 5 x 3 is more semi-circular than
that of 3 x 5.



that holds only for certain number systems like the integers and the real numbers.
Students seldom encounter non-commutative systems until they are introduced to
matrices in college. But noncommutative number systems are not actually exotic,
and uncertainty is one reason they appear in practice.

The initial example of tree branches and apples implicitly considers two different
types of objects. Some of the conceptual questions regarding the meaning of reversing
the order of multiplication might be resolved if the types being multiplied were made
explicit. As it turns out, we can extend our concept of multiplication to cases where
individuals/particles have multiple types.

In order to preserve parallels to matrix theory, we will consider only random
variables whose output types are the same as their input types. Suppose we have a
process where individuals can have types 1...m. Define a multitype NCRV F' as
an m X m matrix where the row vector F; is a random variable returning a number
of individuals of each type 7 = 1...m generated from one individual of type i. The
entries of F; may be correlated, so Fj; and Fj; are often dependent for any 4,7, k.
As before, rows are congruent to themselves (F; ~ F;) although realizations of a row
may not be equal (F; # F;). Different rows of F' are always independent, so F;; and
Fy,; are independent provided i # k.

Let G be a different multitype NCRV on 1...m. Then each row ¢ of the product
FG is given by

m  Fij

(FG)i =" G (8)

j=1 k=1

where the Fj;’s are different components of a single realization of F; and for each
k, G is an independent realization of the random vector G;. The computational
implementation to calculate a realization of the random matrix F'G is:

1. For each 7, calculate a realization of the random vector F;.

2. For each j, calculate Fj; realizations of the vector random variable G; and add
them all together (In the degenerate case of F;; = 0, the sum is the 0-vector.)

This can easily be extended to cases where the initial types differ from the output
types. All finite-state discrete-time Markov processes can be included as a special
case of multitype multiplication. The same algebraic properties that we’ve mentioned
for scalar NCRVs apply to multitype NCRVs. With a little care, we can even extend
these ideas to continuously-typed processes where the types are locations in spaces
with real-number coordinates.



The reader should note that the convention we have adopted interpreting NCRV's
as having independent rows leads to a natural left-to-right interpretation of matrix
multiplication. This is particularly convenient as it will correspond naturally with the
standard function notation we will use below for generating functions. While this is
the standard convention in probability-literature, it is the opposite of the convention
in applied mathematics, where column bases are used and matrix equations are most
often read right-to-left.

3 Generating Functions

The algebraic formulation of a language of NCRVs is pedagogically appealing,
but also needs to be associated with a methodology for calculation that leads from ex-
pressions to results. A convenient and powerful computational methodology, referred
to by one author as “generatingfunctionology” [Wilf, 1999], the study of generating
functions, fills this need. Generatingfunctionology makes use of a special class of non-
linear functions, called generating functions, to simplify certain common calculations
in a manner similar to the use of matrices to simplify the study of linear functions.
Probability theory has made use of generating functions since its inception, beginning
with the work of De Moivre in 1730 and making a significant appearance in Laplace’s
derivation of the Central Limit Theorem in 1810 [Stigler, 1986]. Generating func-
tions are powerful because they implicitly encapsulate the basic sorting and searching
operations needed to simplify mathematical expressions. This has made their use
popular in many areas of mathematics. Generating functions are convenient because
they allow us to use standard calculus operations to determine common results like
the expectation of a random variable. This section defines generating functions and
reviews some of their their basic properties as they relate to NCRVs . In particular,
we highlight the relationship between NCRVs and a particular flavor of generating
functions call cumulant generating functions.

A generation function is a representation of the probability distribution of a
random variable, put in a convenient mathematical form [Kimmel and Axelrod, 2002,
Haccou et al., 2005]. There are several different flavors of generating functions. We
will begin with one called “cumulant generating functions” (CGFs). If z is our
random variable, the cumulant generating function of x is defined as

z(0) == In(e™) 9)

where (-) represents the expected value of its argument. If the random variable is a



non-negative integer, then

F(0) =10 py(n)e™, (10)

Here, the natural log should be interpreted in a symbolic sense as the inverse of
function of the exponential such that

e*® — pr(n)ene (11)
n=0

and the CGF is uniquely defined.

Cumulant generating functions get their names from their property of generating
the mean, variance, and higher order cumulant statistics of their underlying distribu-
tion. Specifically, the coefficients of the cumulant generating function’s Taylor series
around ¢ = 0 are given by

7(0) = (2)0+ 3 () 0> + O(6"), (12)

where ((-)) represents the variance. The expected value of x is

~ _ _ ZZO:O npz(n) — (x
T e )

the variance of x is ”(# = 0), and higher order cumulants can be calculated in a
similar manner. Note that as long as the probabilities p,(n) sum to 1, z(0) = 0. If
a variable k is deterministic, such that

1 if n=k
= ’ 14
Pr(n) { 0 otherwise, (19)

then its CGF
k(0) = anpk(n)e"G = Inef = ff. (15)
n=0

All cumulants of a deterministic variable are zero accept for the expectation. This
matches our intuition, since we do not think of the number 3 as having a variance
or skew.



CGFs are just one of several closely related families of generating functions in-
cluding the moment generating function (MGF) (e%%), the Z-transform (A~%), the
characteristic function and Fourier transform (e*), and the probability generating
function (PGF) (s*). Each of these has a natural application. Using the PGF, for
instance, the probability p, of any integer n can be calculated by interpreting the
argument as a complex number and evaluating a contour integral,

e,
Pn = (2mi)nt1 j{ s”“d ' (16)

s=0

All four of these flavors of generating functions are formally interrelated by various
transforms, so we can choose one as a standard for our analysis. CGF’s are special for
one particular reason: the algebraic rules of cumulant generating functions exactly
correspond to the algebraic rules of the random variables they describe. We can show

this by proving a correspondence between the various common algebraic operations.
Take w,,y, and z as NCRVs with CGFs w(#) = In(e*?), Z(0) = In(e*?), y(0) =
In(e¥?), and Z(0) = In(e*?).

Proposition 1. If z ~ x +y, then Z(0) = z(0) + y(0).
Proof. By definition,
Z(0) = In{e*?) = In(e@ %) = In(e™?ev?). (17a)
Since x and y are independent variables,
In(e”e?’) = In [(e")(e*”)] = In(e") + In(e*’). (17b)

We now conclude that

2(0) = 7(0) + 7(0). (17¢)

NCRVs and their CGF’s also share a multiplicative relationship.

Proposition 2. z ~ zy implies Z(0) = z(y(0)).

Proof. We will need to make use of two particular results in this proof. The first is
a special case of our general result. If x is actually a constant in the sense that it
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takes on a particular integer value with probability 1, then since all realizations of
y; are independent,

<€(Z§”=1 y¢)9> = (eOevel ... us0) — (10) (a0 ... (We0) — (W0)z (18a)

Second is the idea of conditional expectation [Williams, 1991]. In general, the expec-
tation of a function of a set of random variables can be rewritten as the expectation
over the first of the conditional expectation over the rest given the first. Specifically,

(f(@ 1, 0)) = (@, y, - )l2) ). (18b)

We now proceed to the result. By definition,

2(6) = In(e®) = In(e(X1v)0y = In( (e(S1w:)f)2) ), (18¢)
By Eq. (18a)
(X v )07y — (), (18d)
2(0) = In( ()" ) = In(e” ™) = Z(7(9)). (18e)
]

So multiplication of NCRVSs corresponds to composition of their CGF’s. That
the converses are also true follows from the uniqueness of CGF’s.

Proposition 3. If x and z are random variables on the counting numbers and Z(0) =
z(0), then z ~ .

Proof. Restricting 6 to the positive real numbers, there is a bijection for CGF's to
PGFs. Given PGFs, we can then show p,(n) = p,(n) for all n, implying z ~x. O

Clearly in these proofs, I am sacrificing rigor for simplicity. Generating functions
are primarily symbolic objects or data-structures to borrow a term from computer-
science. Despite the obvious temptations, interpretations of generating functions as
“functions” on the real or complex numbers are secondary.
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4 Elementary Applications

The correspondence between the random variables and their CGFs allows us
to quickly derive certain results. An elementary algebraic result is that NCRV
multiplication is associative.

Proposition 4. If x, y, and z are NCRVs , z(yz) ~ (zy)z.

Proof. Let u ~ x(yz). Then u(d) =z (y (2(f))). Since function composition is always
associative, we can either calculate the composition of i and z, and then compose
with = or we can calculate the composition of z and y, and then compose with z.
The later, in combination with Proposition 3, implies u ~ (xy)z. O]

There is also a correspondence for the right-distributive law.
Proposition 5. If w ~ (z +y) z, then w(0) = z(z(0)) + y(z(6)).

Proof. This follows directly from the previous results and the rules of function com-
position. n

We can use the Taylor expansions of CGF's to derive some general rules for the
calculation of cumulants of sums and products of NCRVs | for instance. If

7(0) = a0 + %92 +0(6%), (19)
7(0) = b6 + %292 + 0(6%), (20)

then
T(0) + (0) = (ar + b1) 0 + (“2 - 62) 62 + O(6°), (21)

and

F(7(0)) = a1 |16 + % + 0(93)} + % {blé + szW + 0(93)] L 0(6%)
= aybf + <M> 0% + O(6°). (22)
2
Thus,

(x+y)=(@)+{y), and ((z+y)) =)+ {y), (23)



while

(wy) = (@) (y), and  ((zy)) = (@) ((v)) + (@) (v)". (24)

We see that expectations behave commutatively, since (xy) = (yx), but variances do
not, since in general ((xy)) # ({(yx)). The result that the expectation of the products
of NCRVs is the product of their expectations is a special case of Wald’s equation.
We can also use the correspondence between NCRVs and their CGFs to directly
derive CGF's for new random variables. Observe that the CGF for a constant integer
n is n(f#) = nf, and the CGF for a Bernoulli random variable b that returns 1
with probability p and 0 with probability 1 — p is 3(9) = In(1 — p + pe?). Now,
suppose we want to construct a new variable z that is the sum of n independent
Bernoulli variables. Then x ~ nb, so 7(6) = n(b(#)) = nln(1 — p + pe?). In fact,
this is the CGF of a binomial random variable with parameters p and n. Similarly,
the negative binomial distribution is the sum of n geometricly distributed random
variables. Table 1 lists cumulant generating functions for some common distributions.

In epidemiology, random variable multiplication is a natural way to model the
transmission of an infectious disease. Suppose x is a random variable describing
the number times a sick individual transmits a disease to susceptible individuals. If
each of these newly infected individual also transmits the disease a random number
x times, then the second generation of transmission will have xz ~ 22 sick people.
Similarly, n’th generation of transmission will have z" sick individuals. If x has a
CGF z(0), then the CFG of 2™ will be an n-fold composition of .

Suppose, instead of just needing to know the number of individuals sick in the n’th
generation, we actually want to know the total number of individual who become sick
over the course of the epidemic. We can use the random-variable algebra to derive
an equation for this CGF as well. Without loss of generality, we can assume the
epidemic starts with 1 sick individual. Let T'(¢) be a random variable for the total
number of sick individuals caused by one infection after ¢ generations of transmission.
Then T'(1) = 1 and the total number of sick individuals after ¢ + 1 generations of
transmission is equal to the first individual plus all the individuals infected in ¢
generations for each infection caused by the first individual, T'(t + 1) ~ 1 + 2T'(¢).
Taking the limit as ¢ — oo,

T(oo) ~14z(1+z(l+z(..)) ~1+2T (o) (25)

Note that, since multiplication is not right-distributive,

T(c0) » Y a'. (26)
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Table 1: Common cumulant generating functions

Name Probability Distribution Cumulant Generator
Generic Integer Distribution frix €L fO) =Y _, f.e™
Bernoulli p*(1—p)t=* x €{0,1} In(1 — p+ pe?)
Binomial #ix)!p’”(l —p)" ", xe{0...n} nln (1 —p+ pe(’)
Poisson %e”‘ (69 — 1) A
Geometric (1—p)p° In(1—p)—1In(1— pe’)
Negative Binomial %(1 —p)*p”® a [ln (1—p)—1In (1 — pee)}
Multitype Bernoulli p* In (3=, pie®)
Multinomial %Px nln (Zz pieai)

Point mass d(z —n) nf

Uniform I[“b+]c(f) In %
Exponential e AT Y=, (%)j ~—-Inl1-2%
Gamma A(Ax)! % —clnl— 47
Normal % 1026 + m#
Cauchy %m mé — a|f/i| (formal)
Laplace 2e el In 3115\ [(g — 1)71 +(¢+ 1)71}
Bessel sV (G2 K, ()22 —nlnl— 2

14



By the correspondence principle, if T'(0o; ) is the CGF of T'(c0) then

T(00:0) =6+ 7 (T(oo; 9)) . (27)
T(oo; 0) can then be calculated by solving this equation algebraically or using series
methods. For instance, if a sick person infects two new individuals with probability
p and no individuals with probability 1 — p, then

Z(0) =In (1 — p + pe*) (28)
and
T(0;0) =6 +1In <1 —p+ peﬁ(o‘w)) . (29)
Solving for f(oo; 0),
T(c0:6) = In [1 — 1 —4p(1 - p)e29] — 6 —1In2p. (30)

We can calculate the probability that the epidemic goes extinct, which corre-
sponds to the probability that the epidemic size is finite. For any CGF y, y(0 =
0) = In(1), where (1) is the sum of the probabilities of all finite states. Applied to
Eq. (30),

L A2l

T(c030 _
2p

e (31)
is the probability that the epidemic eventually goes extinct and has a finite number
of cases. This is also the answer to the classic problem of the extinction of surnames
studied by Galton and Watson.

The reader may wonder at this point if these methods can be extended beyond
the positive integers to other number systems. The answer is a qualified yes, but
not with the full generality we might naively hope for. In particular, there is no
universal way to extend left-multiplication by a negative, rational, or real number,
since we can not have negative realizations of a variable or a fraction of a realization.
With care, however, useful results can be reconstructed. For instance, we can usually
make sense of right-multiplication by arbitrary-valued random variables over which
we can define an addition operation. As one example, NCRVs where we define right-
multiplication by a real number can be used to motivate the central limit theorem.
Suppose x is a real-valued NCRV , n is an integer-valued deterministic variable. As
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classically formulated [Feller, 1968], the central limit theorem states that if y is a
sequence of random variables with

T +2o+ ...+ Ty
Y n

, (32)

then as n — oo, the distribution of y converges to a Gauss distribution with the
same mean as x and a variance ((y)) = ((z)) /n. To motivate this using NCRV

algebra, we first note that if A is a positive real number describing a dilation of x,
then the CGF of x times A is

In (") = In (e®™7) =7 (\0). (33)

If we take n to be the deterministic integer number of samples of x and n=! to be
the deterministic amount we shrink each sample by, then

y ~nrn "t (34)
If # has CGF
z(0) = ()0 + @92 + O(6°) (35)
and we explicitly calculate the CGF of y,
Tn(0) =n |(x)n 10 + “%» (n710)” + O(n 6% (36)
= (z) 6+ <<2Ln>>e2 +O0(n26%) (37)

By inspection, we see that the CGF of y converges to that of a Gauss distribution
with expectation (z) and variance ((x)) /n for large n. Of course, this is not a fully
general result because x is restricted to integer values, but it is a useful intermediate
step for students.

As a second example of working with non-integer valued random variables, sup-
pose a particle diffuses along a line from an initial position at the origin, but has a
constant hazard of stopping at any given instant. What is the distribution of settling
positions? This problem was originally solved in an ecology context by Yamamura
[2002], where the results were obtained using standard methods. Here, we show how
a more general result is obtained using NCRVs .

A particle is released at the origin at time 0. This particle advects and diffuses
along a line for some random time before settling in its final location. If the hazard
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of settling in any given instant is constant, then for a small time interval At the
particle settles with a small probability AAt. Let the number of time steps before a
particle settles be represented by an integer-valued NCRV Nj; that is geometrically
distributed with CGF

Nai(8) = In (1 - (1A_A§ At)e") : (38)

Now, over the same small time interval At, the displacement sa; of an advecting and
diffusing particle is normally distributed like

1 tegeay? (39)
e t
Var DAt

where a is the advection rate and D is the diffusion rate. The CGF of the displace-
ment is

sac(0) = aAth + DALO*, (40)

Having descriptions of both the movement and settling processes, the final position of
the particle is approximately the sum of the displacements over each interval before
the particle settles. Since the number of intervals is given by the NCRV Nja;, and
all displacements are independent and identically distributed, then the final position
is approximately given by the NCRV ya; ~ Nassas, and the corresponding CGF

~ AAL
yar(f) = In (1 —(1- )\At)eaAtQJrDAtG?) : (41)
Taking the limit as the time interval At becomes infinitessimal,
. af + D6?
Aliglo Uat(@) = —In (1 - T) : (42)

In the special case of a = 0, standard tables show that this is the CGF of a Bessel
distribution. Thus, the settling distribution for a diffusing particle with no advection
and a constant risk of settling is a Bessel distribution. Our more general result,
however, can be used in other calculations like that of determining spreading speeds
of invasive species. Similar results can be derived in any case where an appropriate
At-scaling of the settlement time can be constructed.

An interesting aspect of this derivation is that it involves two continuous NCRVs
, one for time and one for space. In order to capture multiplication, we had to
discretize time and look at the limit of small time steps, but were able to leave space
as a continuous variable.
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5 Continuous-Time Autonomous Processes

Small time steps can also be used to derive differential equations describing the
continuous change in a process’s state. Suppose that the NCRV x; represents one
individual’s contribution to the change of a branching process’s state over a small
window of time At¢. Then over a time window nAt, the cumulative change in the
population is described by the NCRV equation

E(nAt) ~ Z(0)x3,, (43)

where Z(0) represents the population’s initial state at time ¢ = 0. Progressing one
more increment At forward in time,

Z(nAt + At) ~ E(0)zR,xar ~ ZE(RAL)T AL (44)

These NCRV equations can be used to obtain differential equations for the evolu-
tion of the CGF. As a simple example, consider a density-independent birth-death
process. The probability of an event happening in a small window of time At is AAt.
That event is a birth with probability p and a death with probability 1 —p. It follows
that the CGF representing the change to an individual over this small window At is

Fac(0) = In [(1 — AAt)e’ + pAAte® + (1 — p)AAL] &~ 0+ [pe® — €’ + (1 — p)] MAL
(45)

The coefficient of At in the series approximation is called the infinitessimal generator
of the process. Autonomous branching processes can be identified completely by their
generators. If Z(¢) is the NCRV representing the state of the population at time ¢,
then the CGF for the random variable Z(¢ 4+ At) representing state of the population
at time ¢t + At is

E(t+ At,0) =2 (1,0 + [pe® — ¢ + (1 - p)] AAt) . (46)
In the limit of At — 0,

0=(t,0)  0=(t,9)

ot 00
So the change in the CGF is described by a first-order linear partial differential
equation. This equation is referred to as the forward equation because it describes
the evolution of an arbitrary distribution of states forward in time. From this partial

differential equation, we can obtain simpler equations for the mean, variance, and
extinction probabilities.

Ape® — e’ +(1—p)]. (47)

18



In addition to the forward equation, the infinitessimal generator also defines a
backward equation which describes the CGF's for a process starting with exactly one
individual at time ¢t = 0. Since (45) is the CGF for the first increment of time for
the population’s change,

T(t+ At) = T(t) + [pe™ ™ — ™ 4 (1 — p)] AAL. (48)

In the infinitessimal limit, we find the backward equation defining the CGF is

dr _ A [pe* — e + (1 —p)] (49)
dt
with initial condition Z(t = 0,6) := 6.
By differentiating the equations for the CGFs, we can get equations for the dy-
namics of the mean and variance over time. First derivatives of both Eq. (47) and
Eq. (49) with respect to 6 and evaluated at 6 = 0 yield

10 _ g1y (50)

But the variance equations are different in the forward and backward cases. Forward
in time, the variance evolves according to the linear equation

1d((z
L) g 1) () + (a0 1) () (51)
Backward in time, the variance evolves according to the nonlinear equation
1d((z
LA — (o 1) () + (4~ 1) 2 (52
A dt
For further discussion of related models, see Matis and Kiffe [2000].

6 Conclusion

The basic method of studying branching processes using generating functions
was introduced more than a century ago, and is used frequently throughout math-
ematics. Here, I have described an alternative perspective on branching processes
using non-commuting random variable algebra and cumulant generating functions.
This approach simplifies some of the mathematical machinery usually needed in ma-
nipulation of branching processes. The connections between modelling concepts,
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mathematical formulations, and simulation algorithms are center-stage, and can be
grasped quickly. This approach leverages people’s common knowledge of algebra
and statistics. Modelling with branching processes is reduced to constructing some
probability distributions, writing some standard algebra equations, and applying the
rules of function composition. Result are easily derived in terms of both means and
variances. In addition, the NCRV approach is another example of how algebra laws
like the commutative law and the distributive law are special properties of some
systems rather than universal laws.

Our discussion of cumulant generating functions has been concerned mostly with
single-type variables. Useful results for multi-type NCRVs can be found by extending
the definitions of generating functions to include multiple variables:

F(6y,0,,...) = In(eFortFao+.)

In this way, covariance and conditional extinction relationships can be derived. Simi-
larly, generating functions for continuously-typed processes can be constructed using
functional integration methods. This leads to a particularly nice approach to the
Fokker-Plank equations for diffusion.

The practical use of the NCRV approach remains unclear. Perhaps they are
no more than a convenient trick. All of the examples described here, with the
possible exception of parts of Eq. (42), are standard. They are closely related to the
geometric rewrite rules used in plant morphology [Prusinkiewicz and Lindenmayer,
1990, Meinhardt, 2003]. The extensions to multitype and continuous-type processes
allow for the study of the Fokker-Plank equation and related processes. Certainly,
mathematicians have powerful tools for the study of branching processes that do not
rely on the non-commuting random variable framework. But sometimes alternative
perspectives are fruitful, making complicated arguments simple and suggesting new
avenues of research.
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