Theorems on the Division of Integers

Theorem (Division Theorem). For any integer \(b \) and any positive integer \(a \), there exist a unique pair of integers \((q, r)\) such that \(0 \leq r < a \) and \(b = aq + r \).

Definition (Divisibility Relation). \(a \) divides \(b \), \(a|b \), if and only if the division theorem implies \(b = aq + r \) where \(r = 0 \).

Theorem (Division of a Linear Combination). If \(a, b, \) and \(c \) are integers so \(c|a \) and \(c|b \), then \(c|as + bt \) for any integers \(s \) and \(t \).

Definition (GCD). The greatest common divisor of \(a \) and \(b \), \(\gcd(a, b) = \max\{d : d \in \mathbb{Z} \land d|a \land d|b\} \).

Theorem (GCD bounds). For every pair of positive integers \((a, b)\), \(1 \leq \gcd(a, b) \leq \min(a, b) \), where \(\min(a, b) \) is the minimum of \(a \) and \(b \).

Theorem (GCD Duality Theorem). \(\gcd(a, b) = \min\{as + bt : (s, t) \in \mathbb{Z} \times \mathbb{Z}, as + bt > 0\} \)

Theorem (GCD--Divisibility equivalence). \(c|\gcd(a, b) \leftrightarrow (c|a \land c|b) \)

Theorem (Euclidian Algorithm Theorem). If \(b = aq + r \) where \(q \) and \(r \) are given by the Division Theorem, then either \(r = 0 \) and \(\gcd(a, b) = a \), or \(0 < r \) and \(\gcd(a, b) = \gcd(a, r) \).

Theorem (Associativity of GCD). Suppose we have an infinite sequence of positive integers, \(a_1, a_2, a_3, \ldots\),

\[\gcd(a_1 \ldots a_n) = \gcd(\gcd(a_1 \ldots a_{n-1}), a_n). \]

Definition (Relatively Prime). \(x \) and \(y \) are relatively prime to each other if and only if \(\gcd(x, y) = 1 \).

Theorem (Division with Relative Primes). (1) If \(\gcd(a, b) = 1 \) and \(a|bc \), then \(a|c \). (2) If \(\gcd(a, b) = 1 \) and \(a|c \) and \(b|c \), then \(ab|c \).

Definition (Prime). \(p \) is prime if and only if \(\{x : x \in \mathbb{N} \land x|p\} = \{1, p\} \).

Theorem (Euclid’s lemma). If \(p \) is prime and \(p|ab \) then \(p|a \) or \(p|b \).

Theorem (General Euclid’s lemma). If \(p \) is prime and \(p|\prod_{k=1}^n a_i \), then \(p|a_k \) for some \(k \).

Theorem (Prime Factorization Theorem, Fundamental Theorem of Arithmetic). Every finite positive integer \(a \) can be written a product of prime numbers

\[a = \prod_{i=1}^n p_i. \]

This product is unique, except for the order of the primes.

Theorem. There are infinitely many prime numbers.