1. Is the following statement true, false, or neither?

Given an injective function $f:A \rightarrow B$, where A is the domain and B is the codomain, then $|f(A)| = |B|$, where $f(A)$ is the image of A under f.

True
False
Does not make sense
I don't know yet

2. Is the following statement true, false, or neither?

Given a surjective function $f:A \rightarrow B$, where A is the domain and B is the codomain, then $|f(A)| = |A|$, where $f(A)$ is the image of A under f.

True
False
Does not make sense
I don't know yet

3. Is the following statement true, false, or neither?

Given a surjective function $f:A \rightarrow B$, where A is the domain and B is the codomain, then $|f(A)| = |B|$, where $f(A)$ is the image of A under f.

True
False
Does not make sense
I don't know yet

4. Is the following statement true, false, or neither?

Given a bijective function $f:A \rightarrow B$, where A is the domain and B is the codomain, then $|f(A)| = |A|$, where $f(A)$ is the image of A under f.

True
False
Does not make sense
I don't know yet

5. Is the following statement true, false, or neither?

Given a bijective function $f:A \rightarrow B$, where A is the domain and B is the codomain, then $|f(A)| = |B|$, where $f(A)$ is the image of A under f.

True
False
Does not make sense
I don't know yet

6. Is the following statement true, false, or neither?

Given a bijective function $f:A \rightarrow B$, then $|A| = |B|$.

True
False
Does not make sense
I don't know yet

7. Find the inverse of the following function, if it exists. $$\begin{pmatrix} -3&-2&-1&0&1&2&3 \\ -1&3&1&-2&0&2&-3 \end{pmatrix}$$

8. Find the inverse of the following function, if it exists. $$\begin{pmatrix} 0&1 \\ 1&0 \end{pmatrix}$$

9. Find the inverse of the following function, if it exists. $$\begin{pmatrix} 0&1&2&3&4 \\ 4&3&1&0&1 \end{pmatrix}$$

10. Find the inverse of the following function, if it exists. $$f : \{ x : x^2 < 3 \} \rightarrow \{\alpha, \beta, \gamma, \delta\}$$

11. Given $$f := \begin{pmatrix} 0&1&2&3&4 \\ 0&4&1&2&3 \end{pmatrix},$$ $$g := \begin{pmatrix} 0&1&2&3&4 \\ 4&1&3&0&2 \end{pmatrix},$$ find the composition f@g.

12. Given $$f := \begin{pmatrix} 0&1&2&3&4 \\ 0&4&1&2&3 \end{pmatrix},$$ $$g := \begin{pmatrix} 0&1&2&3&4 \\ 4&1&3&0&2 \end{pmatrix},$$ find the composition g@f.

13. Given $$f := \begin{pmatrix} 0&1&2&3&4 \\ 1&0&3&2&4 \end{pmatrix},$$ $$g := \begin{pmatrix} 0&1&2&3&4 \\ 3&2&1&4&0 \end{pmatrix},$$ find the composition f@g.

14. Given $$f := \begin{pmatrix} -2&-1&0&1&2 \\ 0&-2&1&2&-1 \end{pmatrix},$$ $$g := \begin{pmatrix} 0&1&2&3&4 \\ 0&2&3&1&4 \end{pmatrix},$$ find the composition f@g.

15. Given $$f := \begin{pmatrix} -2&-1&0&1&2 \\ 2&0&1&4&3 \end{pmatrix},$$ $$g := \begin{pmatrix} 0&1&2&3&4 \\ 1&2&-1&-2&0 \end{pmatrix},$$ find the composition g@f.