next up previous
Next: About this document ... Up: Vitali's Theorem and WWKL Previous: Vitali's Theorem

Bibliography

1
K. Ambos-Spies, G. H. Müller, and G. E. Sacks, editors.
Recursion Theory Week, number 1432 in Lecture Notes in Mathematics. Springer-Verlag, 1990.
ix + 393 pages.

2
Errett Bishop and Douglas Bridges.
Constructive Analysis.
Grundlehren der mathematischen Wissenschaften. Springer-Verlag, 1985.
xii + 477 pages.

3
M. Boffa, D. van Dalen, and K. McAloon, editors.
Logic Colloquium '78, Studies in Logic and the Foundations of Mathematics. North-Holland, 1979.
x + 434 pages.

4
Douglas K. Brown.
Functional Analysis in Weak Subsystems of Second Order Arithmetic.
PhD thesis, The Pennsylvania State University, 1987.
vii + 150 pages.

5
Douglas K. Brown and Stephen G. Simpson.
Which set existence axioms are needed to prove the separable Hahn-Banach theorem?
Annals of Pure and Applied Logic, 31:123-144, 1986.

6
Douglas K. Brown and Stephen G. Simpson.
The Baire category theorem in weak subsytems of second order arithmetic.
Journal of Symbolic Logic, 58:557-578, 1993.

7
O. Demuth and A. Kucera.
Remarks on constructive mathematical analysis.
In [3], pages 81-129. 1979.

8
H.-D. Ebbinghaus, G.H. Müller, and G.E. Sacks, editors.
Recursion Theory Week, number 1141 in Lecture Notes in Mathematics. Springer-Verlag, 1985.
ix + 418 pages.

9
Harvey Friedman.
unpublished communication to Leo Harrington, 1977.

10
Harvey Friedman, Stephen G. Simpson, and Rick L. Smith.
Countable algebra and set existence axioms.
Annals of Pure and Applied Logic, 25:141-181, 1983.

11
Harvey Friedman, Stephen G. Simpson, and Rick L. Smith.
Addendum to ``Countable algebra and set existence axioms''.
Annals of Pure and Applied Logic, 27:319-320, 1985.

12
A. James Humphreys and Stephen G. Simpson.
Separable Banach space theory needs strong set existence axioms.
Transactions of the American Mathematical Society, 348:4231-4255, 1996.

13
Antonín Kucera.
Measure, $\Pi^0_1$ classes and complete extensions of PA.
In [8], pages 245-259, 1985.

14
Antonín Kucera.
Randomness and generalizations of fixed point free functions.
In [1], pages 245-254, 1990.

15
Antonín Kucera.
On relative randomness.
Annals of Pure and Applied Logic, 63:61-67, 1993.

16
Per Martin-Löf.
The definition of random sequences.
Information and Control, 9:602-619, 1966.

17
W. Sieg, editor.
Logic and Computation, Contemporary Mathematics. American Mathematical Society, 1990.
xiv + 297 pages.

18
Wilfried Sieg.
Fragments of arithmetic.
Annals of Pure and Applied Logic, 28:33-71, 1985.

19
Stephen G. Simpson.
Subsystems of Second Order Arithmetic.
Perspectives in Mathematical Logic. Springer-Verlag.
in preparation.

20
Stephen G. Simpson.
Partial realizations of Hilbert's program.
Journal of Symbolic Logic, 53:349-363, 1988.

21
Xiaokang Yu.
Measure Theory in Weak Subsystems of Second Order Arithmetic.
PhD thesis, Pennsylvania State University, 1987.
vii + 73 pages.

22
Xiaokang Yu.
Radon-Nikodym theorem is equivalent to arithmetical comprehension.
In [17], pages 289-297. 1990.

23
Xiaokang Yu.
Riesz representation theorem, Borel measures, and subsystems of second order arithmetic.
Annals of Pure and Applied Logic, 59:65-78, 1993.

24
Xiaokang Yu.
Lebesgue convergence theorems and reverse mathematics.
Mathematical Logic Quarterly, 40:1-13, 1994.

25
Xiaokang Yu.
A study of singular points and supports of measures in reverse mathematics.
Annals of Pure and Applied Logic, 79:211-219, 1996.

26
Xiaokang Yu and Stephen G. Simpson.
Measure theory and weak König's lemma.
Archive for Mathematical Logic, 30:171-180, 1990.



Stephen G Simpson
1998-10-25