next up previous
Next: Bibliography Up: Vitali's Theorem and WWKL Previous: More Measure Theory in

   
Vitali's Theorem

Let $\mathcal{S}$ be a collection of sets. A point x is said to be Vitali covered by $\mathcal{S}$ if for all $\epsilon>0$ there exists $S\in\mathcal{S}$ such that $x\in S$ and the diameter of S is less than $\epsilon$. The Vitali Covering Theorem in its simplest form says the following: if $\mathcal{I}$ is a sequence of intervals which Vitali covers an interval E in the real line, then $\mathcal{I}$ contains a countable, pairwise disjoint set of intervals In, $n\in\mathbb{N} $, such that $\bigcup_{n=0}^\infty I_n$ covers E except for a set of Lebesgue measure 0.

The purpose of this section is to show that various forms of the Vitali Covering Theorem are provable in $\mathsf{WWKL}_0$ and in fact equivalent to WWKL over $\mathsf{RCA}_0$.

Throughout this section, we use $\mu$ to denote Lebesgue measure.

Lemma 5.1 (Baby Vitali Lemma)   The following is provable in $\mathsf{RCA}_0$. Let $I_0,\dots,I_n$ be a finite sequence of intervals. Then we can find a pairwise disjoint subsequence $I_{k_0},\dots,I_{k_m}$ such that

\begin{displaymath}\mu(I_{k_0}\cup\dots\cup I_{k_m}) \,\,\geq\,\, \frac13\,
\mu(I_0\cup\dots\cup I_n) \,\,. \end{displaymath}

Proof. Put $N=\{0,\dots,n\}$. By bounded $\Sigma^0_1$ comprehension in $\mathsf{RCA}_0$, the finite sets

\begin{displaymath}\{\,(i,j)\in N^2\mid I_i\cap
I_j=\emptyset\,\} \end{displaymath}

and

\begin{displaymath}\{\,(i,j)\in
N^2\mid\mu(I_i)\leq\mu(I_j)\,\} \end{displaymath}

exist. Using these finite sets as parameters, we can carry out the following primitive recursion within $\mathsf{RCA}_0$. Begin by letting $k_0\leq n$ be such that $\mu(I_{k_0})$ is as large as possible. Then let k1 be such that $I_{k_1}\cap I_{k_0}=\emptyset$ and $\mu(I_{k_1})$ is as large as possible. At stage j, let kj be such that $I_{k_j}\cap
I_{k_0}=\emptyset$, ..., $I_{k_j}\cap I_{k_{j-1}}=\emptyset$ and $\mu(I_{k_j})$ is as large as possible. The recursion ends with a finite, pairwise disjoint sequence of intervals Ik0, ..., Ikm such that

\begin{displaymath}\forall i\leq n\,\, \exists j\leq m\,\, [\,
I_i\cap I_{k_j}\,\neq\,\emptyset \,] \,\,. \end{displaymath}

By construction it follows easily that

\begin{displaymath}\forall i\leq n\,\, \exists j\leq m\,\, [\,
I_i\cap I_{k_j}\...
...,\emptyset\mbox{ and }
\mu(I_i)\,\leq\,\mu(I_{k_j}) \,] \,\,. \end{displaymath}

For any such i and j, we have $I_i\subseteq I'_{k_j}$, where I'kj is an interval with the same midpoint as Ikj and 3 times as long. (If I=[a,b], then I'=[2a-b,2b-a].) Thus

\begin{eqnarray*}\mu(I_0\cup\dots\cup I_n) & \leq & \mu(I'_{k_0}\cup\dots\cup
I...
...u(I_{k_m}) \\ [3pt]
& = & 3\,\mu(I_{k_0}\cup\dots\cup I_{k_m})
\end{eqnarray*}


and the lemma is proved.

Lemma 5.2   The following is provable in $\mathsf{WWKL}_0$. Let E be an interval, and let In, $n\in\mathbb{N} $, be a sequence of intervals. If $E\subseteq\bigcup_{n=0}^\infty I_n$, then

\begin{displaymath}\mu(E)\,\,\leq\,\,\lim_{k\to\infty}\,\mu\!\left(\,\bigcup_{n=0}^k
I_n\!\right) \,\,.\end{displaymath}

Proof. If the intervals In are open, then the desired conclusion follows immediately from countable additivity (Theorem 3.3). Otherwise, fix $\epsilon>0$ and let I'n be an open interval with the same midpoint as In and

\begin{displaymath}\mu(I'_n)\,\,=\,\,\mu(I_n)+\frac\epsilon{2^n} \,\,.\end{displaymath}

Then by countable additivity we have

\begin{displaymath}\mu(E) \,\,\leq\,\,
\lim_{k\to\infty}\,\mu\!\left(\,\bigcup_...
...\,\mu\!\left(\,\bigcup_{n=0}^k
I_n\!\right) + 2\epsilon \,\,. \end{displaymath}

Since this holds for all $\epsilon>0$, the desired conclusion follows.

Lemma 5.3 (Vitali theorem for intervals)   The following is provable in $\mathsf{WWKL}_0$. Let E be an interval, and let $\mathcal{I}$ be a sequence of intervals which is a Vitali covering of E. Then $\mathcal{I}$ contains a pairwise disjoint sequence of intervals In, $n\in\mathbb{N} $, such that

\begin{displaymath}\mu\!\left(\!E\setminus\bigcup_{n=0}^\infty I_n\!\right) = 0 \,\,.
\end{displaymath}

Proof. We reason in $\mathsf{WWKL}_0$. Without loss of generality, let us assume that $\mathcal{I}$ consists of closed intervals. Let $\mathcal{I}^{*}$ be the set of finite unions $I_1\cup\dots\cup I_k$ where $I_1,\dots,I_k$ are pairwise disjoint intervals from $\mathcal{I}$. We claim: Given $A\in\mathcal{I}^{*}$, if $\mu(E\setminus A)>0$ then we can find $B\in\mathcal{I}^{*}$ such that $A\cap B=\emptyset$ and

 \begin{displaymath}
\mu(E\setminus(A\cup B)) \,\,<\,\, \frac34 \,\mu(E\setminus A)
\,\,.
\end{displaymath} (3)

To prove the claim, use Lemma 5.2 and the Vitali property to find a finite set of intervals $J_1,\dots,J_l\in\mathcal{I}$ such that $J_1,\dots,J_l\subseteq E\setminus A$ and

\begin{displaymath}\mu\left(E\setminus(A\cup J_1\cup\dots\cup J_l\right)) \,\,<\,\,
\frac1{12} \,\mu(E\setminus A) \,\,. \end{displaymath}

By the Baby Vitali Lemma 5.1, we can find a pairwise disjoint subset $\{I_1,\dots,I_k\}\subseteq\{J_1,\dots,J_l\}$ such that

\begin{displaymath}\mu(I_1\cup\dots\cup I_k) \,\,\ge\,\, \frac13 \,\mu(J_1\cup\dots\cup J_l)
\,\,. \end{displaymath}

We then have

\begin{eqnarray*}\lefteqn{\mu(E\setminus(A\cup I_1\cup\dots\cup I_k))} \quad \\ ...
...12} \,\mu(E\setminus A) \\
& = & \frac34 \,\mu(E\setminus A)
\end{eqnarray*}


Thus we may take $B=I_1\cup\dots\cup I_k$ and our claim is proved.

Note that the predicates $A\cap B=\emptyset$ and (3) are $\Sigma^0_1$. Thus within $\mathsf{RCA}_0$ we can apply our claim recursively to choose a pairwise disjoint sequence $A_0=\emptyset$, A1, A2, ...of sets in $\mathcal{I}^{*}$ such that for all $n\ge1$,

\begin{displaymath}\mu(E\setminus(A_1\cup\dots\cup A_n)) \,\,<\,\,
\left(\frac34\right)^n \mu(E) \,\,. \end{displaymath}

Then by countable additivity we have

\begin{displaymath}\mu\!\left(\!E\setminus\bigcup_{n=1}^\infty A_n\!\right) \,\,=\,\, 0 \end{displaymath}

and the lemma is proved.

Remark 5.4   It is straightforward to generalize the previous lemma to the case of a Vitali covering of the n-cube [0,1]n by closed balls or n-dimensional cubes. In the case of closed balls, the constant 3 in the Baby Vitali Lemma 5.1 is replaced by 3n.

Theorem 5.5   The Vitali theorem for the interval [0,1] (as stated in Lemma 5.3) is equivalent to WWKL over $\mathsf{RCA}_0$.

Proof. Lemma 5.3 shows that, in $\mathsf{RCA}_0$, WWKL implies the Vitali theorem for intervals. It remains to prove within $\mathsf{RCA}_0$ that the Vitali theorem for [0,1] implies WWKL. Instead of proving WWKL, we shall prove the equivalent statement 3.3.3. Reasoning in $\mathsf{RCA}_0$, suppose that (an,bn), $n\in\mathbb{N} $, is a sequence of open intervals which covers [0,1]. Let $\mathcal{I}$ be the countable set of intervals

\begin{displaymath}(a_{nki},b_{nki}) \,\,=\,\, \left(a_n+\frac{i}{k}(b_n-a_n)\,,\,\,
a_n+\frac{i+1}{k}(b_n-a_n)\right) \end{displaymath}

where $i,k,n\in\mathbb{N} $ and $0\le
i<k$. Then $\mathcal{I}$ is a Vitali covering of [0,1]. By the Vitali theorem for intervals, $\mathcal{I}$ contains a sequence of pairwise disjoint intervals Im, $m\in\mathbb{N} $, such that

\begin{displaymath}\mu\!\left(\,\bigcup_{m=0}^\infty I_m\!\right)\,\,\geq\,\,1\,\,.\end{displaymath}

By disjoint countable additivity (Corollary 2.5), we have

\begin{displaymath}\sum_{m=0}^\infty\,\mu(I_m)\,\,\geq\,\,1\,\,.\end{displaymath}

From this it follows easily that $\sum_{n=0}^\infty\vert a_n-b_n\vert\geq1$. Thus we have 3.3.3 and our theorem is proved.

We now turn to Vitali's theorem for measurable sets. Recall our discussion of measurable sets in section 4. A sequence of intervals $\mathcal{I}$ is said to almost Vitali cover a Lebesgue measurable set $E\subseteq[0,1]$ if for all $\epsilon>0$ we have $\mu_L\left(E\setminus O_\epsilon\right) = 0$, where

\begin{displaymath}O_\epsilon \,\,=\,\, \bigcup\,\{I\mid I\in\mathcal{I}\,,
\mbox{ diam}(I)<\epsilon\}\,\,.\end{displaymath}

Theorem 5.6   The following is provable in $\mathsf{WWKL}_0$. Let $E\subseteq[0,1]$ be a Lebesgue measurable set with $\mu(E)>0$. Let $\mathcal{I}$ be a sequence of intervals which almost Vitali covers E. Then $\mathcal{I}$ contains a pairwise disjoint sequence of intervals In, $n\in\mathbb{N} $, such that

\begin{displaymath}\mu\!\left(\!E\setminus\bigcup_{n=0}^\infty I_n\!\right)
\,\,=\,\, 0 \,\,.\end{displaymath}

Proof. The proof of this theorem is similar to that of Lemma 5.3. The only modification needed is in the proof of the claim. Recall from Definition 4.5 that $E=\lim_{n\to\infty}E_n$ where each En is a finite union of intervals in [0,1]. Fix m so large that

\begin{displaymath}\mu((E\setminus E_m)\cup(E_m\setminus E)) \,\,<\,\, \frac1{36}
\,\mu(E\setminus A) \,\,. \end{displaymath}

As before, find a finite set of intervals $J_1,\dots,J_l\in\mathcal{I}$ such that

\begin{displaymath}J_1\cup\dots\cup
J_l\,\,\subseteq\,\, E_m\setminus A \end{displaymath}

and

\begin{displaymath}\mu\left(E_m\setminus(A\cup J_1\cup\dots\cup
J_l\right)) \,\,<\,\, \frac1{36} \,\mu(E\setminus A) \,\,. \end{displaymath}

Find $\{I_1,\dots,I_k\}\subseteq\{J_1,\dots,J_l\}$ as before. We then have

\begin{eqnarray*}\lefteqn{\mu(E\setminus(A\cup I_1\cup\dots\cup I_k))} \quad \\ ...
...6}
\,\mu(E\setminus A) \\
& = & \frac34 \,\mu(E\setminus A)
\end{eqnarray*}


Thus we may take $B=I_1\cup\dots\cup I_k$ and the claim is proved. The rest of the proof is as for Lemma 5.3.

Remark 5.7   Once again, the previous theorem can be generalized to the case of a Lebesgue measurable set $E\subseteq[0,1]^n$ and a Vitali covering consisting of closed balls or n-dimensional cubes. Such versions of Vitali's theorem are also provable in $\mathsf{WWKL}_0$.


next up previous
Next: Bibliography Up: Vitali's Theorem and WWKL Previous: More Measure Theory in
Stephen G Simpson
1998-10-25