Next: About this document ...
Up: On the Strength of
Previous: Proof of the Main
-
- 1
- R. Aharoni,
König's duality theorem for infinite bipartite graphs,
Journal of the London Mathematical Society (Second Series),
29, 1984, pp. 1-12.
- 2
- R. Aharoni, M. Magidor, and R. A. Shore,
On the strength of König's duality theorem
for infinite bipartite graphs,
Journal of Combinatorial Theory (B),
54, 1992, pp. 257-290.
- 3
- A. R. Blass, J. L. Hirst, and S. G. Simpson,
Logical analysis of some theorems of
combinatorics and topological dynamics,
in [8], pp. 125-156.
- 4
- H. Friedman,
Subsystems of set theory and analysis,
Ph. D. Thesis, M. I. T., 1967, 83 pp.
- 5
- H. Friedman,
Systems of second order arithmetic with restricted induction I, II
(abstracts), Journal of Symbolic Logic,
41, 1976, pp. 557-559.
- 6
- H. M. Friedman, K. McAloon, and S. G. Simpson,
A finite combinatorial principle which is equivalent to the
1-consistency of predicative analysis,
in [11], pp. 197-230.
- 7
- D. König,
Theorie der Endlichen und Unendlichen Graphen,
Akademische Verlagsgesellschaft, Leipzig, 1936,
reprinted by Chelsea, New York, 1950, 258 pp.
- 8
- Logic and Combinatorics,
edited by S. G. Simpson,
Contemporary Mathematics, American Mathematical Society,
Providence, 1987, 384 pp.
- 9
- Logic Colloquium '80,
edited by D. van Dalen, D. Lascar and J. Smiley,
North-Holland, Amsterdam, 1982, 342 pp.
- 10
- A. Marcone,
Borel quasi-orderings in subsystems of second-order arithmetic,
Annals of Pure and Applied Logic,
54, 1991, pp. 265-291.
- 11
- Patras Logic Symposion,
edited by G. Metakides,
North-Holland, Amsterdam, 1982, 391 pp.
- 12
- K. P. Podewski and K. Steffens,
Injective choice functions for countable families,
Journal of Combinatorial Theory (B),
21, 1976, pp. 40-46.
- 13
- H. Rogers, Jr.,
Theory of Recursive Functions and Effective Computability,
McGraw-Hill, New York, 1967, reprinted by M.I.T. Press,
Cambridge, 1987, 482 pp.
- 14
- S. G. Simpson,
Set-theoretic aspects of
,
in [9], pp. 255-271.
- 15
- S. G. Simpson,
and
transfinite induction,
in [9], pp. 239-253.
- 16
- S. G. Simpson,
Subsystems of Z2 and Reverse Mathematics,
in [18], pp. 432-446.
- 17
- S. G. Simpson,
Subsystems of Second Order Arithmetic,
in preparation.
- 18
- G. Takeuti,
Proof Theory (Second Edition),
North-Holland, Amsterdam, 1987, 490 pp.
Stephen G Simpson
1998-10-25