Qualifying Exam in Numerical Analysis
August 17, 2001

There are ten problems. Six problems fully and correctly solved will guarantee a pass.

(1) Let \(T_n(x) \) denote the \(n \)th Chebyshev polynomial on the interval \([-1, 1]\) defined by using the following recurrence relation
\[
T_0(x) = 1, \quad T_1(x) = x, \quad T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x).
\]

a. Show that \(T_n(x) = \cos(n \arccos x) \).

b. Prove that
\[
\int_{-1}^{1} T_n T_m \frac{1}{\sqrt{1-x^2}} \, dx = 0 \quad \text{for all integers } n \text{ and } m, \text{ such that } n \neq m, \, n, m > 0.
\]

c. Prove that \(T_{nm}(x) = T_n(T_m(x)) \) for all integers \(n, m > 0 \).

a. Let \(\alpha = \arccos x \). It is sufficient to show that \(\cos(n \arccos x) \) satisfies the same recurrence relation as \(T_n \). For \(n = 0, 1 \) the result is trivial. Then a. follows from the fact that
\[
\cos(n + 1)\alpha + \cos(n - 1)\alpha = 2 \cos \alpha \cos n\alpha.
\]

b. and c. are easy and straightforward applications of a.

(2) Let \(\Omega \) be a bounded domain in \(\mathbb{R}^2 \) with smooth boundary \(\partial \Omega \). Consider the following partial differential equation:
\[
\begin{cases}
-\Delta u + u_x &= f, \quad x \in \Omega, \\
u &= 0, \quad x \in \partial \Omega.
\end{cases}
\]

a. Write down the variational formulation of the above differential problem: Find \(u \in H^1_0(\Omega) \) such that
\[
 B(u, v) = f(v), \quad \forall v \in H^1_0(\Omega).
\]

Show that this variational problem has a unique solution \(u \in H^1_0(\Omega) \) for any right hand side \(f \in L^2(\Omega) \).

b. Let \(V_h \) be a finite dimensional subspace of \(H^1_0(\Omega) \). Show that the discrete problem: Find \(u_h \in V_h \) such that
\[
 B(u_h, v_h) = f(v_h), \quad \forall v_h \in V_h,
\]
is well posed and that the following quasi-optimal error estimate holds:
\[
|u - u_h|_{H^1_0(\Omega)} \leq C \inf_{\chi \in V_h} |u - \chi|_{H^1_0(\Omega)}.
\]

a. Variational form is: Find \(u \in H^1_0(\Omega) \) such that
\[
 B(u, v) = f(v), \quad \forall v \in H^1_0(\Omega),
\]

where as usual
\[
 B(u, v) = \int_{\Omega} \nabla u \nabla v + u_x v \, dx, \quad f(v) = \int_{\Omega} fv \, dx.
\]

Simple integration by parts leads to
\[
 B(u, u) = |u|^2_{H^1_0(\Omega)}.
\]
and from this equality the Lax-Milgram lemma gives the result from (a.)

b. The discrete problem is well posed by the same token as in a. To prove the bound, let \(\chi \in V_h \) be arbitrary. Note that
\[
B(u - u_h, v_h) = 0, \quad \forall v_h \in V_h,
\]
and also by Schwarz inequality and Poincare inequality
\[
B(u, v) \leq C|u|_{H^1_0(\Omega)}|v|_{H^1_0(\Omega)}.
\]
Combining the above two results we obtain that
\[
|u - u_h|^2_{H^1_0(\Omega)} = B(u - u_h, u - u_h) = B(u - u_h, u - \chi) \leq C|u - u_h|_{H^1_0(\Omega)}|u - \chi|_{H^1_0(\Omega)}.
\]
and the proof of (b.) is completed by taking the infimum over \(\chi \in V_h \).

(3) Consider the nonlinear equation \(F(x) = 0 \), where \(F : \Omega \rightarrow \mathbb{R}^n, \Omega \subset \mathbb{R}^n \) is a \(C^1 \) function.

a. Derive the Newton’s method, namely for a given initial guess \(x_0 \) derive the formula for \(x_{k+1} \) in terms of \(x_k \) if Newton’s method is used for the approximate solution of \(F(x) = 0 \).

b. Assume that \(F \in C^3 \) and \(F'(x_*) \) is non-singular, where \(x_* \) is a solution of \(F(x) = 0 \). Prove that the Newton’s method is well defined if \(x_0 \) is sufficiently close to \(x_* \) and that the sequence of Newton iterates converges quadratically to the solution.

a. By Taylor’s formula we have that
\[
F(x) \approx F(x_0) + [F'(x_0)](x - x_0).
\]
In Newton’s method an approximation to the root is obtained by solving the approximate equation, which is linear with respect to \(x \). So given \(x_k \) we have that the next iterate \(x_{k+1} \) is obtained by
\[
x_{k+1} = x_k - [F'(x_k)]^{-1}F(x_k).
\]
b. Clearly, if \(x_k \) is sufficiently close to \(x_* \), we have that \(F'(x_k) \) is non-singular (because is continuous and non-singular at \(x_* \)). So we have to prove that if \(x_k \) is in a small neighborhood of \(x_* \), then \(x_{k+1} \) will stay in the same neighborhood. Let \(G(x) := x - [F'(x)]^{-1}F(x) \). Clearly \(x_* \) is a fixed point of \(G \). A simple calculation gives
\[
G'(x) = I - K(x)F(x) - [F'(x)]^{-1}F'(x) = -K(x)F(x),
\]
where
\[
K(x) = ([F'(x)]^{-1})' = -[F'(x)]^{-1}[F''(x)][F'(x)]^{-1}.
\]
Note also that for \(x, y \in \mathbb{R}^n \)
\[
G(y) - G(x) - G'(x)(y - x) = \left(\int_0^1 [G''(x + t(y - x)) - G'(x)] dt \right)(y - x)
\]
We have that \(G'(x) \) is Lipschitz (it is even differentiable, because \(F \in C^3 \)) and this gives the following estimate:
\[
\|G(y) - G(x) - G'(x)(y - x)\| \leq \frac{C}{2}\|x - y\|^2,
\]
where \(C \) is the Lipschitz constant (or a bound on the second derivative of \(G \) in case when \(F(x) \in C^3 \)). Taking \(x = x_*, y = x_k \) and using that \(G'(x_*) = 0 \) we obtain
\[
\|x_{k+1} - x_*\| \leq \frac{C}{2}\|x_k - x_*\|^2.
\]
(4) Consider the initial value problem
\[y' = f(t, y), \quad y(0) = y_0. \]

a. Derive an explicit, two-stage, second order Runge-Kutta method for the approximate solution of this problem of the form
\[y_{n+1} = y_n + h[\alpha_1 f(t_n, y_n) + \alpha_2 f(t_n + \theta h, y_n + k_n)]. \]

Justify your answer.

Let us set \(k_n = \beta hf(t_n, y_n). \) We compare
\[y_{n+1} = y_n + h[\alpha_1 f(t_n, y_n) + \alpha_2 f(t_n + \theta h, y_n + k_n)]. \] \hspace{1cm} (1)

with
\[y_{n+1} = y_n + hf + \frac{h^2}{2} y_n'' + \frac{h^3}{6} y_n''' + \ldots \] \hspace{1cm} (2)

trying to match the coefficients in front of equal powers of \(h. \) Applying Taylor formula for \(f(t_n + \theta h, y_n + k_n) \) then gives
\[f(t_n + \theta h, y_n + \beta hf) = f + \theta hf_t + \beta h f_y + \mathcal{O}(h^2), \]

where \(f = f(t_n). \) After substitution in (1) we get
\[y_{n+1} = y_n + (\alpha_1 + \alpha_2) hf + \theta \alpha_2 h^2 f_t + \beta \alpha_2 h^2 f_y + \mathcal{O}(h^3). \]

Note that \(y' = f \) gives \(y'' = f_t + f f_y. \) Therefore 2 takes the form:
\[y_{n+1} = y_n + hf + \frac{h^2}{2}(f_t + f f_y) + \mathcal{O}(h^3). \]

This leads to the following equations for \(\alpha_i, \beta \) and \(\theta. \)
\[\alpha_1 + \alpha_2 = 1, \quad \theta \alpha_2 = \frac{1}{2}, \quad \beta \alpha_2 = \frac{1}{2}. \]

There are many solutions to these equations. A popular one is obtained when \(\alpha_1 = \alpha_2 \) and the corresponding method is given below.
\[y_{n+1} = y_n + \frac{h}{2}[f(t_n, y_n) + f(t_{n+1}, y_n + k_n)], \quad k_n = hf(t_n, y_n) \]

(5) a. Find \(\alpha \) and \(\beta \) such that the weighted quadrature rule
\[\int_0^1 \frac{f(x)}{\sqrt{x}} dx = \alpha f(0) + \beta f(1) \]
is exact when \(f \) is linear.

b. Give the Peano kernel error formula for quadrature rule from (a.)

a.
\[\int_0^1 \frac{f(x)}{\sqrt{x}} dx = \frac{4}{3} f(0) + 2 \frac{2}{3} f(1). \]

b. We note that the above rule is exact if \(f \in \mathcal{P}_1. \) The Peano kernel theorem then gives:
\[\int_0^1 \frac{f(x)}{\sqrt{x}} dx - \left[\frac{4}{3} f(0) + 2 \frac{2}{3} f(1) \right] = \int_0^1 f''(t) K(t) dt, \]
where $K(t)$ is the error in approximating $(x - t)_+$ by the above quadrature rule (the integration is done with respect to x. This gives the following expression for $K(t)$:

\[
\int_0^1 \frac{(x-t)_+}{\sqrt{x}}\,dx - \frac{2}{3}(1-t) = \frac{4}{3}t(\sqrt{t} - 1).
\]

(6) Let A be the following 2×2 matrix

\[
A = \begin{pmatrix} a & -b \\ -a & a \end{pmatrix},
\]

where a and b are real numbers, satisfying $a > 0$, $b > 0$ and $a > b$. Show that Gauss-Seidel iteration is convergent for this type of matrices.

The Gauss-Seidel iteration for the matrix A will be convergent iff $\rho(I - BA) < 1$, where

\[
B = \begin{pmatrix} a & 0 \\ -a & a \end{pmatrix}^{-1} = \frac{1}{a} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
\]

This gives

\[
I - BA = \frac{b}{a} \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}
\]

From this equation it is straightforward to find that $\rho(I - BA) = \frac{b}{a} < 1$.

(7) Consider the space \mathcal{P}_2 of all quadratic polynomials on $[0, 2]$.

a. Prove that the expression

\[
\|f\| := |f(0)| + |f(1)| + |f(2)|, \quad f \in \mathcal{P}_2,
\]

defines a norm on \mathcal{P}_2.

b. Determine a best approximation to $f(x) = x^2$ by the constant functions with respect to this norm.

c. Is this best constant approximation to $f(x) = x^2$ unique? Justify your answer.

a. The proof that $\|\cdot\|$ is a norm is straightforward. First observe that $f(0) = f(1) = f(2) = 0$ implies that $f \equiv 0$ for a quadratic polynomial f. The other properties easily follow from similar ones for the absolute value. b. Let p be the approximation under question. It follows that p minimizes

\[
g(p) = |p| + |p - 1| + |p - 4|.
\]

Evidently g is a piece-wise linear function and its minimal value is achieved at one of the critical points (where $g'(p)$ does not exists). We then easily find that such a point is $p = 1$ and is unique.
(8) Given the following parabolic partial differential equation
\[u_t - \Delta u = 0, \quad x \in \Omega = (0, 1) \times (0, 1), \quad t \in [0, \infty) \]
\[u(x, 0) = u^0(x), \]
\[u(x, t) = 0, \quad x \in \partial \Omega, \quad t \in [0, \infty), \]
consider its finite difference discretization on a uniform \(N \times N \) mesh with steps \(h = \frac{1}{N-1} \) in space and \(\tau > 0 \) in time:
\[
\frac{u^{n+1}_{i,j} - u^n_{i,j}}{\tau} + \frac{4u^{n+1}_{i,j} - u^n_{i,j} - u_{i+1,j}^{n+1} - u_{i,j-1}^{n+1} - u_{i,j+1}^{n+1} - u_{i,j}^{n+1}}{h^2} = 0, \quad 2 \leq i, j \leq N - 1,
\]
where
\[u^n_{i,j} = u(x_i, y_j, n\tau), \quad x_i = (i-1)h, \quad y_j = (j-1)h, \quad i = 1, 2, \ldots, N, \quad j = 1, 2, \ldots, N. \]

a. Let \(L_h u \) denotes the stationary part of the above finite difference operator, namely:
\[L_h u := \frac{4u_{i,j} - u_{i-1,j} - u_{i+1,j} - u_{i,j-1} - u_{i,j+1}}{h^2}, \quad 2 \leq i, j \leq N - 1. \]

Show that \(I + \tau L_h \) satisfies the following maximum principle:

If \((I + \tau L_h)u \geq 0 \text{ and } u_{i,j} \geq 0 \text{ for } (x_i, y_j) \in \partial \Omega, \text{ then } u_{i,j} \geq 0, \quad 1 \leq i, j \leq N\)

where \(I \) denotes the identity operator.

b. Prove that
\[\max_{i,j} u^{n+1}_{i,j} \leq \max_{i,j} u^n_{i,j}. \]

To prove a. we will show that if \((I + L_h)u \geq 0 \text{ and } u_{i,j} \text{ has a local minimum in an internal point } (x_{i_0}, y_{j_0}), \text{ then } u_{i_0,j_0} \geq 0. \)

Let
\[u_{i_0,j_0} \leq u_{k,l}, \quad k = i_0 - 1, i_0 + 1; \quad l = j_0 - 1, j_0 + 1. \]

Then
\[
0 \leq (I + \tau L_h)u = u_{i_0,j_0} + \frac{\tau}{h^2} (4u_{i_0,j_0} - u_{i_0-1,j_0} - u_{i_0+1,j_0} - u_{i_0,j_0-1} - u_{i_0,j_0+1}) \leq u_{i_0,j_0}.
\]

The boundary condition gives that the desired inequality is satisfied on the boundary of the domain and the desired result follows.

b. Let \(u^n_{\max} := \max_{i,j} u^n_{i,j} \) and
\[w^n_{i,j} := u^n_{\max}, \quad \text{for all } i = 1, 2, \ldots, N, \quad j = 1, 2, \ldots, N. \]

To prove b. it is sufficient to show that \(u^n_{\max} \geq u_{i,j}^{n+1}, \quad \forall \ i, j. \)

Note that \(u^n \) and \(u^{n+1} \) satisfy the relation
\[(I + \tau L_h)u^{n+1} = u^n, \quad u_{i,j}^{n+1} = 0 \quad (x_i, y_j) \in \partial \Omega. \]

We also have that in the interior of \(\Omega, \)
\[0 \leq w^n - u^n = (I + \tau L_h)(w^n - u^{n+1}). \]

Since \((I + \tau L_h)\) satisfies maximum principle complete the proof by applying (a.)
Let \(A \in \mathbb{R}^{m \times n} \) have rank \(n \), and \(b \in \mathbb{R}^m \).

a. Show that the matrix \(A^T A \) is invertible.

b. Show that there exists a unique \(x \in \mathbb{R}^n \) minimizing \(Ax - b \) with respect to the Euclidean norm and \(x = (A^T A)^{-1}A^T b \).

Let us first note that \(n \leq m \) because \(A \) has rank \(n \). Since we consider finite dimensional space we shall prove a. by showing that \(\text{Ker}(A^T A) = \{0\} \) or equivalently that \(A^T A \) is injective. Assume that there is an \(x \in \mathbb{R}^n \) such that \(A^T A x = 0 \). We then have
\[
0 = (A^T A x, x) = \|Ax\|^2 \implies Ax = 0.
\]
But \(A \) has rank \(n \) which exactly means that there is no \(x \neq 0 \) for which \(Ax = 0 \) and therefore \(A^T A \) is injection. This in turn implies \(A^T A \) is invertible.

b. To prove the statement we first observe that \(F(x) = \|Ax - b\|^2 \) is a quadratic functional, namely
\[
F(x) = (A^T A x, x) - 2(A^T b, x) + \|b\|^2.
\]
Note that \(F \) has a unique minimum, because by a. \(A^T A \) is invertible and hence positive definite. The Euler-Lagrange equations for such functional then are:
\[
A^T A x = A^T b.
\]
and so the solution of \(\min_{y \in \mathbb{R}^n} F(y) \) is \(x = (A^T A)^{-1}A^T b \).

Let \(A = (a_{ij}) \) be a symmetric and positive definite matrix of order \(n \).

\[
A = \begin{pmatrix}
a_{11} & a_{12}^T \\
a & A_1
\end{pmatrix}.
\]

After one step of Gaussian elimination \(A \) is converted to a matrix of the form
\[
\begin{pmatrix}
a_{11} & a_{12}^T \\
0 & \tilde{A}
\end{pmatrix}.
\]

a. Find an explicit formula for \(\tilde{A} \) in terms of \(a_{11}, A_1 \) and \(a \).

b. Show that the \((n - 1) \times (n - 1)\) matrix \(\tilde{A} \) is symmetric and positive definite.

a. \(\tilde{A} = A_1 - \frac{aa^T}{a_{11}} \).

b. Let \(x \in \mathbb{R}^{n-1} \) be arbitrary and \(x_1 := -\frac{(a, x)}{a_{11}} \). Consider
\[
y = \begin{pmatrix} x_1 \\ x \end{pmatrix}
\]
Note that \((Ay, y) = (\tilde{A}x, x) \). Since \(A \) is symmetric positive definite, we have that there exists a number \(\gamma \) such that \((Ay, y) \geq \gamma \|y\|^2 \). Therefore
\[
\gamma \|x\|^2 \leq \gamma \|y\|^2 \leq (Ay, y) = (\tilde{A}x, x).
\]