The gradient vector is \(\nabla z(x, y) = \langle -6x, -2y \rangle \); at the given point, it is \(\nabla z(0, 1) = \langle 0, -2 \rangle \).

(a) The slope in the direction of \(u = \langle 1/\sqrt{2}, 1/\sqrt{2} \rangle \) is the directional derivative in that direction. We have already been given a unit vector, so we don’t need to rescale. Just compute,

\[
D_u f(0, 1) = \langle 1/\sqrt{2}, 1/\sqrt{2} \rangle \cdot \langle 0, -2 \rangle = -\sqrt{2}.
\]

So the slope in the given direction is \(-\sqrt{2}\).

(b) In order to stay at constant elevation, you would need to walk along a level curve—in other words, orthogonally to the gradient \(\nabla z(0, 1) = \langle 0, -2 \rangle \). So you would walk in the direction of \(\langle 1, 0 \rangle \) (or in the opposite direction).

(c) Steepest ascent occurs in the direction of the gradient vector \(\langle 0, -2 \rangle \), and the maximal slope is equal to the length of this vector, i.e. 2.

2 We have \(f_x = y^2 + \frac{1}{2}x - 4 \), \(f_y = 2xy \). Critical points occur when \(f_x = f_y = 0 \), i.e.

\[
y^2 = 4 - \frac{1}{2}x, \quad 2xy = 0.
\]

The second equation implies that either \(x = 0 \) or \(y = 0 \). If \(x = 0 \), then the first equation implies that \(y = \pm 2 \). So \((0, \pm 2) \) are two critical points. If, on the other hand, \(y = 0 \), then the first equation says that \(x = 8 \), so \((8, 0)\) is the only other critical point.

Now \(f_{xx} = 1/2, f_{yy} = 2x \), and \(f_{xy} = 2y \). For each critical point, we calculate \(D = f_{xx}f_{yy} - f_{xy}^2 = x - 4y^2 \):

- \((0, 2)\): \(D < 0 \), so \(f \) has a saddle point at \((0, 2)\).
- \((0, -2)\): \(D < 0 \), so \(f \) has a saddle point at \((0, -2)\).
- \((8, 0)\): \(D > 0 \), and \(f_{xx} = 1/2 > 0 \), so \(f \) has a local minimum at \((8, 0)\).

3 If \(x^2 + y^2 = 1 \), then \(x^2 = 1 - y^2 \), and consequently we have \(f(x, y) = y(1 - y^2) \). This is a function of just one variable; we apply the methods of single-variable calculus. The first derivative is \(1 - 3y^2 \), which has zeros at \(y = \pm 1/\sqrt{3} \). Putting this into \(x^2 + y^2 = 1 \) gives us the four points \((\pm \sqrt{2/3}, 1/\sqrt{3}), (\pm \sqrt{2/3}, -1/\sqrt{3})\). At the former points, the value of \(f \) is \(2/(3\sqrt{3}) \); at the latter, it is \(-2/(3\sqrt{3})\). These are, respectively, the maximum and minimum values of \(f \) subject to the given constraint.

4 Consider the graph \(z = 2 - \sqrt{4 - x^2 - y^2} \). This is the lower hemisphere of the sphere with centre \((0, 0, 2)\) and radius 2 (Why? Rearrange the equation to get \(z - 2 = -\sqrt{4 - x^2 - y^2} \). This says that \(z - 2 < 0 \). Keeping this in mind, square both sides and rearrange to get \(x^2 + y^2 + (z - 2)^2 = 4 \). This is the equation of the sphere centre \((0, 0, 2)\) radius 2; the fact that \(z - 2 < 0 \) tells us to consider only the lower hemisphere). The region of integration is the disk in the \(xy \)-plane with centre \((0, 0)\) and radius 2, which is precisely the projection (or “shadow”) of this hemisphere on the \(xy \)-plane.

Now, the integral of a positive function over a region \(D \) is equal to the volume of the solid with base \(D \), bounded above by the graph of that function. By drawing a picture, we see that this volume is equal to the volume of the cylinder (radius 2, height 2), minus the volume of the hemisphere (radius 2). So we get

\[
\iiint_D \left(2 - \sqrt{4 - x^2 - y^2} \right) \, dA = 2\pi(2^2) - \frac{1}{2}\frac{4}{3}\pi(2^3) = \frac{8\pi}{3}.
\]

5 The region of integration (call it \(D \)) is bounded on the left (and above) by the parabola \(x = y^2 \) (a.k.a. \(x = y^{1/2} \)), on the right by the line \(x = 4 \), and below by the line \(y = 0 \). To change the order of
integration, draw a picture of \(D \) and discover that for each \(x, y \) is bounded below by 0 and above by the curve \(y = x^{1/2} \). Since \(x \) ranges from 0 to 4, the integral becomes

\[
\int_0^4 \int_0^{x^{1/2}} ye^x dy dx.
\]

After evaluating the inner integral and substituting the limits of integration, we get the integral \(\int_0^4 \frac{1}{2} e^{x^2} dx \). After a substitution \(u = x^2 \), this becomes \(\frac{1}{4} \int_0^{16} e^u du \), which equals \(\frac{1}{4}(e^{16} - 1) \).

6 The region of integration \(R \) is a sector of an annulus. This region is much better-described in polar coordinates than in rectangular coordinates; its description in polar coordinates is

\[
R = \{(r, \theta) \mid 1 \leq r \leq 2, 0 \leq \theta \leq \pi/4\}.
\]

Using the identity \(x^2 + y^2 = r^2 \), the function we’re integrating becomes \(r^{-3} \). Finally, replacing \(dy dx \) by \(r dr d\theta \) (don’t forget the \(r \)!), we get the integral

\[
\int_0^{\pi/4} \int_1^2 r^{-2} dr d\theta = \int_0^{\pi/4} \frac{1}{2} d\theta = \frac{\pi}{8}.
\]

7 To find the area of a surface which doesn’t lie in the \(xy \)-plane, we use the surface area formula. To apply this formula, we need to know \(D \) (the shadow in the \(xy \)-plane), and \(f \) (the function whose graph is the surface in question). Here we have \(f(x, y) = 4 - \sqrt{x^2 + y^2} \). For \(D \), draw the two cones, and find that they intersect in a circle, centre \((0, 0, 2)\), radius \(2 \). So the region \(D \) is the disk in the \(xy \)-plane, centre \((0, 0)\), radius \(2 \).

Now, to apply the surface area formula, calculate the first partial derivatives of \(f

\[
f_x(x, y) = -x(x^2 + y^2)^{-\frac{1}{2}}, \quad f_y(x, y) = -y(x^2 + y^2)^{-\frac{1}{2}}.
\]

Now the surface area formula tells us that the area of the surface is equal to

\[
\iint_D \sqrt{x^2 + y^2 + 1} dA = \sqrt{2} \iint_D dA = \sqrt{2} \cdot \text{Area}(D) = 4\pi\sqrt{2}.
\]

8 Recall that the average value of a function \(f \) over a region \(E \) is equal to \(\frac{1}{\text{Volume}(E)} \iiint_E f(x, y, z) dV \). Here, \(E \) is a rectangular prism, with volume \(2 \cdot 4 \cdot 1 = 8\pi \). So the average value of \(f \) over \(E \) is

\[
\frac{1}{8\pi} \int_0^1 \int_0^4 \int_0^{2\pi} y \sin x + z dx dy dz
\]

\[
= \frac{1}{8\pi} \int_0^1 \int_0^4 2\pi z dy dz
\]

\[
= \int_0^1 z dz = \frac{1}{2}.
\]

9 Draw a picture of the region. From the picture, discover that in spherical coordinates this region is

\[
E = \{(\rho, \theta, \varphi) \mid 0 \leq \rho \leq 2, 0 \leq \theta \leq 2\pi, \frac{\pi}{4} \leq \varphi \leq \frac{\pi}{2}\}.
\]

The volume of any region \(E \) is given by the triple integral \(\iiint_E dV \). Changing to spherical coordinates (remembering that \(dV = \rho^2 \sin \varphi d\rho d\theta d\varphi \)), we get

\[
\int_{\frac{\pi}{4}}^{\pi/2} \int_0^{2\pi} \int_0^2 \rho^2 \sin \varphi d\rho d\theta d\varphi.
\]
10 (a) Add the two formulae together and divide by 2 to get \(x = \frac{1}{2}(u + v) \). Then subtract the second from the first and divide by 2 to get \(y = \frac{1}{2}(u - v) \).

(b) Find the four first partial derivatives: \(x_u = \frac{1}{2}, \ x_v = \frac{1}{2}, \ y_u = \frac{1}{2}, \ y_v = -\frac{1}{2} \). Now plug these in to the formula for the Jacobian (i.e. take the determinant of the Jacobi matrix) to find that \(\frac{\partial(x,y)}{\partial(u,v)} = -\frac{1}{2} \).

(c) We need to convert the region, the function and the differential into the coordinates \((u, v)\). In this question it is easy to deal with the region \(D \), since the description we’re given tells us immediately that \(1 \leq v \leq 2 \) and \(0 \leq u \leq 3 \). To translate the function \(x^2 - y^2 \) into the coordinates \((u, v)\), just notice that \(x^2 - y^2 = (x + y)(x - y) = uv \) (or, if you didn’t notice this, substitute the formulas you found in part (a) for \(x \) and \(y \), and simplify). As for the differential, we replace \(dA \) by \(\left| \frac{\partial(x,y)}{\partial(u,v)} \right| \ du \ dv = \frac{1}{2} du \ dv \). Combining the three ingredients, we see that the integral in question is equal to

\[
\int_{1}^{2} \int_{0}^{3} \frac{1}{2} uv \ du \ dv = \frac{1}{4} \int_{1}^{2} 9v \ dv = \frac{27}{8}.
\]