PSU Mark
Eberly College of Science Mathematics Department

Meeting Details

For more information about this meeting, contact Nigel Higson, Mathieu Stienon, Ping Xu.

Title:Hermitian Variations of Hodge Structure of Calabi-Yau type
Seminar:GAP Seminar
Speaker:Radu Laza, Stony Brook University
Abstract:
Except a few special cases (e.g. abelian varieties and K3 surfaces), the images of period maps for families of algebraic varieties satisfy non-trivial Griffiths' transversality relations. It is of interest to understand these images of period maps, especially for Calabi-Yau threefolds. In this talk, I will discuss the case when the images of period maps can be described algebraically. Specifically, I will show that if a horizontal subvariety Z of a period domain D is semi-algebraic and it is stabilized by a large discrete group, then Z is automatically a Hermitian symmetric domain with a totally geodesic embedding into the period domain D. I will then discuss the classification of the semi-algebraic cases for variations of Hodge structures of Calabi-Yau type, with a special emphasis on the classification over Q (which is partially based on earlier work of Zarhin). This is joint work with R. Friedman.

Room Reservation Information

Room Number:MB106
Date:04 / 16 / 2013
Time:02:30pm - 03:30pm