BEGIN:VCALENDAR
PRODID:-//PSU Mathematics Department//Seminar iCalendar Generator//EN
VERSION:2.0
CALSCALE:GREGORIAN
METHOD:PUBLISH
X-WR-CALNAME:Hyperbolic and Mixed Type PDEs Seminar
X-WR-TIMEZONE:America/New_York
BEGIN:VTIMEZONE
TZID:America/New_York
X-LIC-LOCATION:America/New_York
BEGIN:DAYLIGHT
TZOFFSETFROM:-0500
TZOFFSETTO:-0400
TZNAME:EDT
DTSTART:19700308T020000
RRULE:FREQ=YEARLY;BYMONTH=3;BYDAY=2SU
END:DAYLIGHT
BEGIN:STANDARD
TZOFFSETFROM:-0400
TZOFFSETTO:-0500
TZNAME:EST
DTSTART:19701101T020000
RRULE:FREQ=YEARLY;BYMONTH=11;BYDAY=1SU
END:STANDARD
END:VTIMEZONE
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20150129T100000
DTEND;TZID=America/New_York:20150129T110000
LOCATION:MB216
URL:http://www.math.psu.edu/seminars/meeting.php?id=27340
SUMMARY:Hyperbolic and Mixed Type PDEs Seminar - TBA
DESCRIPTION:Seminar: Hyperbolic and Mixed Type PDEs Seminar\nTitle: TBA\nAb
stract Link: http://
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20150203T100000
DTEND;TZID=America/New_York:20150203T110000
LOCATION:MB216
URL:http://www.math.psu.edu/seminars/meeting.php?id=27341
SUMMARY:Hyperbolic and Mixed Type PDEs Seminar - TBA
DESCRIPTION:Seminar: Hyperbolic and Mixed Type PDEs Seminar\nTitle: TBA
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20150205T100000
DTEND;TZID=America/New_York:20150205T110000
LOCATION:MB216
URL:http://www.math.psu.edu/seminars/meeting.php?id=27342
SUMMARY:Hyperbolic and Mixed Type PDEs Seminar - TBA
DESCRIPTION:Seminar: Hyperbolic and Mixed Type PDEs Seminar\nTitle: TBA\nAb
stract Link: http://
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20150210T100000
DTEND;TZID=America/New_York:20150210T110000
LOCATION:MB216
URL:http://www.math.psu.edu/seminars/meeting.php?id=27343
SUMMARY:Hyperbolic and Mixed Type PDEs Seminar - TBA
DESCRIPTION:Seminar: Hyperbolic and Mixed Type PDEs Seminar\nTitle: TBA
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20150212T100000
DTEND;TZID=America/New_York:20150212T110000
LOCATION:MB216
URL:http://www.math.psu.edu/seminars/meeting.php?id=27344
SUMMARY:Hyperbolic and Mixed Type PDEs Seminar - TBA
DESCRIPTION:Seminar: Hyperbolic and Mixed Type PDEs Seminar\nTitle: TBA\nAb
stract Link: http://
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20150217T100000
DTEND;TZID=America/New_York:20150217T110000
LOCATION:MB216
URL:http://www.math.psu.edu/seminars/meeting.php?id=27345
SUMMARY:Hyperbolic and Mixed Type PDEs Seminar - TBA
DESCRIPTION:Seminar: Hyperbolic and Mixed Type PDEs Seminar\nTitle: TBA
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20150219T100000
DTEND;TZID=America/New_York:20150219T110000
LOCATION:MB216
URL:http://www.math.psu.edu/seminars/meeting.php?id=27346
SUMMARY:Hyperbolic and Mixed Type PDEs Seminar - TBA
DESCRIPTION:Seminar: Hyperbolic and Mixed Type PDEs Seminar\nTitle: TBA\nAb
stract Link: http://
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20150224T100000
DTEND;TZID=America/New_York:20150224T110000
LOCATION:MB216
URL:http://www.math.psu.edu/seminars/meeting.php?id=27347
SUMMARY:Hyperbolic and Mixed Type PDEs Seminar - TBA
DESCRIPTION:Seminar: Hyperbolic and Mixed Type PDEs Seminar\nTitle: TBA
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20150226T100000
DTEND;TZID=America/New_York:20150226T110000
LOCATION:MB216
URL:http://www.math.psu.edu/seminars/meeting.php?id=27348
SUMMARY:Hyperbolic and Mixed Type PDEs Seminar - TBA
DESCRIPTION:Seminar: Hyperbolic and Mixed Type PDEs Seminar\nTitle: TBA\nAb
stract Link: http://
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20150303T100000
DTEND;TZID=America/New_York:20150303T110000
LOCATION:MB216
URL:http://www.math.psu.edu/seminars/meeting.php?id=27349
SUMMARY:Hyperbolic and Mixed Type PDEs Seminar - TBA
DESCRIPTION:Seminar: Hyperbolic and Mixed Type PDEs Seminar\nTitle: TBA
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20150305T100000
DTEND;TZID=America/New_York:20150305T110000
LOCATION:MB216
URL:http://www.math.psu.edu/seminars/meeting.php?id=27350
SUMMARY:Hyperbolic and Mixed Type PDEs Seminar - TBA
DESCRIPTION:Seminar: Hyperbolic and Mixed Type PDEs Seminar\nTitle: TBA\nAb
stract Link: http://
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20150310T100000
DTEND;TZID=America/New_York:20150310T110000
LOCATION:MB216
URL:http://www.math.psu.edu/seminars/meeting.php?id=27351
SUMMARY:Hyperbolic and Mixed Type PDEs Seminar - TBA
DESCRIPTION:Seminar: Hyperbolic and Mixed Type PDEs Seminar\nTitle: TBA
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20150312T100000
DTEND;TZID=America/New_York:20150312T110000
LOCATION:MB216
URL:http://www.math.psu.edu/seminars/meeting.php?id=27352
SUMMARY:Hyperbolic and Mixed Type PDEs Seminar - TBA
DESCRIPTION:Seminar: Hyperbolic and Mixed Type PDEs Seminar\nTitle: TBA\nAb
stract Link: http://
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20150317T100000
DTEND;TZID=America/New_York:20150317T110000
LOCATION:MB216
URL:http://www.math.psu.edu/seminars/meeting.php?id=27353
SUMMARY:Hyperbolic and Mixed Type PDEs Seminar - Generic singularities of s
olutions to a nonlinear wave equation.
DESCRIPTION:Seminar: Hyperbolic and Mixed Type PDEs Seminar\nTitle: Generic
singularities of solutions to a nonlinear wave equation.\nSpeaker: Albert
o Bressan\, Penn State\nAbstract: The talk will be concerned with \nconse
rvative solutions to the nonlinear \nwave equation u_{tt} - c(u)(c(u
) u_x)_x = 0 \nFor an open dense set of C^3\ninitial data\, the conserv
ative solution is piecewise smooth in the t - x plane\, while\nthe gradien
t u_x can blow up along finitely many characteristic curves. \nThe anal
ysis relies on a variable transformation which reduces the equation to a s
emilinear \nsystem with smooth coefficients\, followed by an application o
f Thom's transversality theorem. \nA detailed description of the solutio
n profile can be given\, in a neighborhood of\nevery singular point and ev
ery singular curve.\nSome results on structurally stable singularities hav
e been obtained also for dissipative solutions.\n(This work is in collabo
ration with Geng Chen\, Tao Huang\, and Fang Yu).
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20150319T100000
DTEND;TZID=America/New_York:20150319T110000
LOCATION:MB216
URL:http://www.math.psu.edu/seminars/meeting.php?id=27354
SUMMARY:Hyperbolic and Mixed Type PDEs Seminar - Piecewise smooth solutions
to the Burgers-Hilbert equation.
DESCRIPTION:Seminar: Hyperbolic and Mixed Type PDEs Seminar\nTitle: Piecewi
se smooth solutions to the Burgers-Hilbert equation.\nSpeaker: Alberto Bre
ssan\, Penn State University\nAbstract: In 2009 J.Biello and J.Hunter deri
ved a balance law for nonlinear waves with constant frequency\, \nobtained
from Burgers' equation by adding the Hilbert transform as a source term.
\nRecent work has established the global existence of solutions\, \nin
the space L^2(R). This talk will describe the construction of\npiecewis
e smooth solutions\, locally in time. \nThe analysis provides a detaile
d description of the solution profile in a neighborhood of each shock.
\nVarious related open problems will be discussed.\n(This is a joint work
with Tianyou Zhang).
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20150324T100000
DTEND;TZID=America/New_York:20150324T110000
LOCATION:MB216
URL:http://www.math.psu.edu/seminars/meeting.php?id=27355
SUMMARY:Hyperbolic and Mixed Type PDEs Seminar - TBA
DESCRIPTION:Seminar: Hyperbolic and Mixed Type PDEs Seminar\nTitle: TBA
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20150326T100000
DTEND;TZID=America/New_York:20150326T110000
LOCATION:MB216
URL:http://www.math.psu.edu/seminars/meeting.php?id=27356
SUMMARY:Hyperbolic and Mixed Type PDEs Seminar - Blow up for the two-compon
ent Camassa--Holm system
DESCRIPTION:Seminar: Hyperbolic and Mixed Type PDEs Seminar\nTitle: Blow up
for the two-component Camassa--Holm system\nSpeaker: Katrin Grunert\, Nor
wegian University of Science and Technology\nAbstract: The two-component C
amassa--Holm system\nu_t-u_{txx}+3uu_x-2u_xu_{xx}-uu_{xxx}+\\rho\\rho_x&=0
\,\nserves as a model for shallow water. Furthermore\, it is a generalizat
ion of the famous Camassa--Holm equation\, which has been studied intensiv
ely due to its rich mathematical structure. Thus a huge class of solutions
enjoys wave breaking within finite time\, but there is also a regularisin
g effect which prevents many solutions form blow up. Hence the aim of this
talk is twofolded. On the one hand we want to study this regularising eff
ect in some detail and on the other hand we want to focus on how to predic
t if a solution enjoys wave breaking in the nearby future or not.\nThis ta
lk is based on joint work with H. Holden and X. Raynaud.
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20150331T100000
DTEND;TZID=America/New_York:20150331T110000
LOCATION:MB216
URL:http://www.math.psu.edu/seminars/meeting.php?id=27357
SUMMARY:Hyperbolic and Mixed Type PDEs Seminar - TBA
DESCRIPTION:Seminar: Hyperbolic and Mixed Type PDEs Seminar\nTitle: TBA
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20150402T100000
DTEND;TZID=America/New_York:20150402T110000
LOCATION:MB216
URL:http://www.math.psu.edu/seminars/meeting.php?id=27358
SUMMARY:Hyperbolic and Mixed Type PDEs Seminar - TBA
DESCRIPTION:Seminar: Hyperbolic and Mixed Type PDEs Seminar\nTitle: TBA\nAb
stract Link: http://
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20150407T100000
DTEND;TZID=America/New_York:20150407T110000
LOCATION:MB216
URL:http://www.math.psu.edu/seminars/meeting.php?id=27359
SUMMARY:Hyperbolic and Mixed Type PDEs Seminar - TBA
DESCRIPTION:Seminar: Hyperbolic and Mixed Type PDEs Seminar\nTitle: TBA
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20150409T100000
DTEND;TZID=America/New_York:20150409T110000
LOCATION:MB216
URL:http://www.math.psu.edu/seminars/meeting.php?id=27360
SUMMARY:Hyperbolic and Mixed Type PDEs Seminar - TBA
DESCRIPTION:Seminar: Hyperbolic and Mixed Type PDEs Seminar\nTitle: TBA\nAb
stract Link: http://
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20150414T100000
DTEND;TZID=America/New_York:20150414T110000
LOCATION:MB216
URL:http://www.math.psu.edu/seminars/meeting.php?id=27361
SUMMARY:Hyperbolic and Mixed Type PDEs Seminar - On the asymptotic stabiliz
ation of a generalized hyperelastic-rod wave equation
DESCRIPTION:Seminar: Hyperbolic and Mixed Type PDEs Seminar\nTitle: On the
asymptotic stabilization of a generalized hyperelastic-rod wave equation\n
Speaker: Fabio Ancona\, Universit`a di Padova\nAbstract: We investigate th
e problem of asymptotic stabilization of the hyperelastic-rod wave equatio
n on the real line \n\\partial_t u-\\partial_{txx}^3 u+3u \\partial_x u=
\\gamma\\left(2\\partial_x u\\\, \\partial_{xx}^2 u+u\\\, \\partial_{xxx}^
3 u\\right)\,\n\nwhere $u(t\,x)$ represents the radial deformation in a c
ylindrical compressible hyperelastic rod\,\nand \\gamma is some given cons
tant depending on the material and on the prestress of the rod.\n Observe
that if $\\gamma=1$\, then the equation is the classical Camassa--Holm eq
uation\n modelling the propagation of unidirectional shallow water waves o
n a flat bottom. \n \n The asymptotic stabilizability of the Camassa--Holm
equation through a stationary feedback law was established\, within the s
pace of $H^2$ solutions\, by O.~Glass (2008) by means of a forcing term ac
ting as a control\, and by V.~Perrollaz (2010) by means of a boundary fee
dback. Here\, we assume $\\gamma>0$\, and we shall address two problems:\n
\n 1. \nWe consider the equation with an additional source term of the for
m\n f: H^1(R)\\to H^{-1}(R)\, f[u]=-\\lambda(u-\\partial_{xx}^2 u)\,\n
for some $\\lambda>0$. With the same approach introduce by A. Bressan and
A.~Constantin (2007)\, we \nshow the existence of a semigroup of global we
ak dissipative solutions of the corresponding closed-loop system\n\\partia
l_t u-\\partial_{txx}^3 u+3u \\partial_x u=\\gamma\\left(2\\partial_x u
\\\, \\partial_{xx}^2 u+u\\\, \\partial_{xxx}^3 u\\right)+f[u]\,\ndefined
for every initial data $u_0\\in H^1(R)$\, and we prove that any such solut
ion decays esponentially to 0 as $t\\to\\infty$.\n\n2.\nWe consider the e
quation with a source term $f(t\,x\,u)$ satisfying some sublinear growth c
ondition in the $u$-variable. By introducing a viscosity approximation of
the equation we establish the existence of global weak dissipative soluti
ons \n\\partial_t u-\\partial_{txx}^3 u+\\partial_x\\big(\\tfrac{g(u)}{2}
\\big)=3u \\partial_x u=\n\\gamma\\left(2\\partial_x u\\\, \\partial_{xx}^
2 u+u\\\, \\partial_{xxx}^3 u\\right)+f(t\,x\,u)\,\nwith initial condition
in $H^1(\\R)$.\n\nThis result aims to provide the basis for constructing
asymptotically stabilizing feedback laws\nof more general form than the on
e considered at point 1.
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20150416T100000
DTEND;TZID=America/New_York:20150416T110000
LOCATION:MB216
URL:http://www.math.psu.edu/seminars/meeting.php?id=27362
SUMMARY:Hyperbolic and Mixed Type PDEs Seminar - A coupling between a non-l
inear 1D compressible-incompressible limit and the 1D P-system in the non
smooth case
DESCRIPTION:Seminar: Hyperbolic and Mixed Type PDEs Seminar\nTitle: A coupl
ing between a non-linear 1D compressible-incompressible limit and the 1D P
-system in the non smooth case\nSpeaker: Graziano Guerra\, Dept. of Mathem
atics and Applcations\, U. of Milan\, Italy\nAbstract: We consider two com
pressible immiscible fluids in one space\n dimension and in the isentropic
approximation. The first fluid is\n surrounded and in contact with the se
cond one. As the sound speed of\n the first fluid diverges to infinity\, w
e prove the\n rigorous convergence for the fully non--linear compressible
to\n incompressible limit of the coupled dynamics of the two fluids. A\n l
inear example is considered in detail\, where fully explicit\n computation
s are possible.
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20150421T100000
DTEND;TZID=America/New_York:20150421T110000
LOCATION:MB216
URL:http://www.math.psu.edu/seminars/meeting.php?id=27363
SUMMARY:Hyperbolic and Mixed Type PDEs Seminar - TBA
DESCRIPTION:Seminar: Hyperbolic and Mixed Type PDEs Seminar\nTitle: TBA
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20150423T100000
DTEND;TZID=America/New_York:20150423T110000
LOCATION:MB216
URL:http://www.math.psu.edu/seminars/meeting.php?id=27364
SUMMARY:Hyperbolic and Mixed Type PDEs Seminar - TBA
DESCRIPTION:Seminar: Hyperbolic and Mixed Type PDEs Seminar\nTitle: TBA\nAb
stract Link: http://
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20150428T100000
DTEND;TZID=America/New_York:20150428T110000
LOCATION:MB216
URL:http://www.math.psu.edu/seminars/meeting.php?id=27365
SUMMARY:Hyperbolic and Mixed Type PDEs Seminar - TBA
DESCRIPTION:Seminar: Hyperbolic and Mixed Type PDEs Seminar\nTitle: TBA
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20150430T100000
DTEND;TZID=America/New_York:20150430T110000
LOCATION:MB216
URL:http://www.math.psu.edu/seminars/meeting.php?id=27366
SUMMARY:Hyperbolic and Mixed Type PDEs Seminar - TBA
DESCRIPTION:Seminar: Hyperbolic and Mixed Type PDEs Seminar\nTitle: TBA\nAb
stract Link: http://
END:VEVENT
END:VCALENDAR