BEGIN:VCALENDAR
PRODID:-//PSU Mathematics Department//Seminar iCalendar Generator//EN
VERSION:2.0
CALSCALE:GREGORIAN
METHOD:PUBLISH
X-WR-CALNAME:Center for Dynamics and Geometry Colloquium
X-WR-TIMEZONE:America/New_York
BEGIN:VTIMEZONE
TZID:America/New_York
X-LIC-LOCATION:America/New_York
BEGIN:DAYLIGHT
TZOFFSETFROM:-0500
TZOFFSETTO:-0400
TZNAME:EDT
DTSTART:19700308T020000
RRULE:FREQ=YEARLY;BYMONTH=3;BYDAY=2SU
END:DAYLIGHT
BEGIN:STANDARD
TZOFFSETFROM:-0400
TZOFFSETTO:-0500
TZNAME:EST
DTSTART:19701101T020000
RRULE:FREQ=YEARLY;BYMONTH=11;BYDAY=1SU
END:STANDARD
END:VTIMEZONE
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20140826T143000
DTEND;TZID=America/New_York:20140826T153000
LOCATION:MB114
URL:http://www.math.psu.edu/seminars/meeting.php?id=23378
SUMMARY:Center for Dynamics and Geometry Colloquium - NO SEMINAR
DESCRIPTION:Seminar: Center for Dynamics and Geometry Colloquium\nTitle: NO
SEMINAR
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20140902T143000
DTEND;TZID=America/New_York:20140902T153000
LOCATION:MB114
URL:http://www.math.psu.edu/seminars/meeting.php?id=23379
SUMMARY:Center for Dynamics and Geometry Colloquium - Area preserving flows
on surfaces: survey and new exceptional behaviour
DESCRIPTION:Seminar: Center for Dynamics and Geometry Colloquium\nTitle: Ar
ea preserving flows on surfaces: survey and new exceptional behaviour\nSpe
aker: Alex Wright\, Stanford University\nAbstract: Since the 60s\, the erg
odic behaviour of area preserving flows on surfaces has been extensively s
tudied. We now know that such flows are typically uniquely ergodic and wea
k mixing\, but typically not mixing. In the case of smooth flows on the to
rus\, or straight line flows on translation surfaces\, they are never mixi
ng. We will give a brief survey of this story\, and explain a new contribu
tion: there exists a mixing smooth flow on a surface with non-degenerate f
ixed points. Joint work with Jon Chaika.
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20140909T143000
DTEND;TZID=America/New_York:20140909T153000
LOCATION:MB114
URL:http://www.math.psu.edu/seminars/meeting.php?id=23380
SUMMARY:Center for Dynamics and Geometry Colloquium - Topological recurrenc
e: variations and questions
DESCRIPTION:Seminar: Center for Dynamics and Geometry Colloquium\nTitle: To
pological recurrence: variations and questions\nSpeaker: Bryna Kra\, North
western University\nAbstract: I will give an overview of recurrence\, focu
sing mainly on topological dynamical systems\, describing combinatorial in
terpretations\, relations between recurrence in different systems\, and me
thods to formulate finite versions. This is based on joint work with Bern
ard Host and Alejandro Maass.
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20140916T143000
DTEND;TZID=America/New_York:20140916T153000
LOCATION:MB114
URL:http://www.math.psu.edu/seminars/meeting.php?id=23381
SUMMARY:Center for Dynamics and Geometry Colloquium - NO SEMINAR
DESCRIPTION:Seminar: Center for Dynamics and Geometry Colloquium\nTitle: NO
SEMINAR
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20140923T143000
DTEND;TZID=America/New_York:20140923T153000
LOCATION:MB114
URL:http://www.math.psu.edu/seminars/meeting.php?id=23382
SUMMARY:Center for Dynamics and Geometry Colloquium - NO SEMINAR
DESCRIPTION:Seminar: Center for Dynamics and Geometry Colloquium\nTitle: NO
SEMINAR
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20140930T143000
DTEND;TZID=America/New_York:20140930T153000
LOCATION:MB114
URL:http://www.math.psu.edu/seminars/meeting.php?id=23383
SUMMARY:Center for Dynamics and Geometry Colloquium - Entropy\, dynamical d
egrees\, and Salem numbers.
DESCRIPTION:Seminar: Center for Dynamics and Geometry Colloquium\nTitle: En
tropy\, dynamical degrees\, and Salem numbers.\nSpeaker: Serge Cantat\, CN
RS-Université de Rennes (presently member of the IAS)\nAbstract: The top
ological entropy is a real number that measures\nthe complexity of the dyn
amical system obtained by iterating a\ntransformation f of a topological s
pace. When the space is a complex\nalgebraic variety\, for instance the co
mplex plane\, and f\nis algebraic\, one can compute a second number : the
dynamical degree of f. \nThis real number measures the exponential growth
\nrate of the degrees of the formulas that one needs to write down the \nn
-th iterate f^n\, as n goes to infinity. I will describe those numbers\,
\nand their relationship. On our way\, we shall meet Salem numbers and Pis
ot \nnumbers\, but not all of them... (based on a joint work with J. Blanc
)
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20141007T143000
DTEND;TZID=America/New_York:20141007T153000
LOCATION:MB114
URL:http://www.math.psu.edu/seminars/meeting.php?id=23384
SUMMARY:Center for Dynamics and Geometry Colloquium - NO SEMINAR
DESCRIPTION:Seminar: Center for Dynamics and Geometry Colloquium\nTitle: NO
SEMINAR
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20141014T143000
DTEND;TZID=America/New_York:20141014T153000
LOCATION:MB114
URL:http://www.math.psu.edu/seminars/meeting.php?id=23385
SUMMARY:Center for Dynamics and Geometry Colloquium - Dynamics of dissipati
ve polynomial automorphisms of C^2
DESCRIPTION:Seminar: Center for Dynamics and Geometry Colloquium\nTitle: Dy
namics of dissipative polynomial automorphisms of C^2\nSpeaker: Mikhail Ly
ubich\, SUNY Stony Brook\nAbstract: Two-dimensional complex dynamics displ
ays a number of phenomena that are not observable in dimension one. Howeve
r\, if f is moderately dissipative then there are deeper similarities betw
een the two fields. In particualar\, a nearly complete classification of p
eriodic Fatou components has been\nrecently obtained:\n\nTheorem 1 (joint
with Han Peters): Any periodic component of the Fatou set is either an att
racting basin or parabolic basin\, or the basin of a rotation domain (Sieg
el disk or Herman ring).\n\nIn complex and real one-dimensional world\, st
ructurally stable maps are dense. In dimension two this fails because of t
he Newhouse phenomenon caused by homoclinic tangencies. Palis conjectured
that in the real two-dimensional case this is the only reason for failure.
We prove a complex version of this conjecture:\n\nTheorem 2 (joint with R
omain Dujardin): Any moderately dissipative polynomial automorphism of C^2
is either ``weakly stable" or it can be approximated by a map with homoc
linic tangency.
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20141021T143000
DTEND;TZID=America/New_York:20141021T153000
LOCATION:MB114
URL:http://www.math.psu.edu/seminars/meeting.php?id=23386
SUMMARY:Center for Dynamics and Geometry Colloquium - TBA
DESCRIPTION:Seminar: Center for Dynamics and Geometry Colloquium\nTitle: TB
A
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20141028T143000
DTEND;TZID=America/New_York:20141028T153000
LOCATION:MB114
URL:http://www.math.psu.edu/seminars/meeting.php?id=23387
SUMMARY:Center for Dynamics and Geometry Colloquium - Some geometric mechan
isms for Arnold Diffusion
DESCRIPTION:Seminar: Center for Dynamics and Geometry Colloquium\nTitle: So
me geometric mechanisms for Arnold Diffusion\nSpeaker: Rafael de la Llave
\, Georgia Tech\nAbstract: We consider the problem whether small perturbat
ions of integable mechanical systems\ncan have very large effects.\n\nIt i
s known that in many cases\, the effcts of the perturbations average out\,
but there\nare exceptional cases (resonances) where the perturbations do
accumulate. It is a complicated\nproblem whether this can keep on happenin
g because once the instability accumulates\, the system\nmoves out of reso
nance.\n\nV. Arnold discovered in 1964 some geometric structures that lead
to accumulation in carefuly constructed\nexamples. We will present some o
ther geometric structures that lead to the same effect in\nmore general sy
stems and that can be verified in concrete systems. In particular\, we wil
l present an\napplication to the restricted 3 body problem. We show that\,
given some\nconditions\, for all sufficiently small\n(but non-zero) valu
es of the eccentricity\, there are orbits near a Lagrange point that gain
\na fixed amount of energy. These conditions (amount to the non-vanishing
of an integral) are\nverified numerically.\n\nJoint work with M. Capinski
\, M. Gidea\, T. M-Seara
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20141104T143000
DTEND;TZID=America/New_York:20141104T153000
LOCATION:MB114
URL:http://www.math.psu.edu/seminars/meeting.php?id=23388
SUMMARY:Center for Dynamics and Geometry Colloquium - TBA
DESCRIPTION:Seminar: Center for Dynamics and Geometry Colloquium\nTitle: TB
A\nSpeaker: Alex Eskin\, University of Chicago
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20141111T143000
DTEND;TZID=America/New_York:20141111T153000
LOCATION:MB114
URL:http://www.math.psu.edu/seminars/meeting.php?id=23389
SUMMARY:Center for Dynamics and Geometry Colloquium - TBA
DESCRIPTION:Seminar: Center for Dynamics and Geometry Colloquium\nTitle: TB
A
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20141118T143000
DTEND;TZID=America/New_York:20141118T153000
LOCATION:MB114
URL:http://www.math.psu.edu/seminars/meeting.php?id=23390
SUMMARY:Center for Dynamics and Geometry Colloquium - TBA
DESCRIPTION:Seminar: Center for Dynamics and Geometry Colloquium\nTitle: TB
A
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20141125T143000
DTEND;TZID=America/New_York:20141125T153000
LOCATION:MB114
URL:http://www.math.psu.edu/seminars/meeting.php?id=23391
SUMMARY:Center for Dynamics and Geometry Colloquium - NO SEMINAR: Thanksgiv
ing break
DESCRIPTION:Seminar: Center for Dynamics and Geometry Colloquium\nTitle: NO
SEMINAR: Thanksgiving break
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20141202T143000
DTEND;TZID=America/New_York:20141202T153000
LOCATION:MB114
URL:http://www.math.psu.edu/seminars/meeting.php?id=23392
SUMMARY:Center for Dynamics and Geometry Colloquium - TBA
DESCRIPTION:Seminar: Center for Dynamics and Geometry Colloquium\nTitle: TB
A
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20141209T143000
DTEND;TZID=America/New_York:20141209T153000
LOCATION:MB114
URL:http://www.math.psu.edu/seminars/meeting.php?id=23393
SUMMARY:Center for Dynamics and Geometry Colloquium - TBA
DESCRIPTION:Seminar: Center for Dynamics and Geometry Colloquium\nTitle: TB
A
END:VEVENT
END:VCALENDAR