BEGIN:VCALENDAR
PRODID:-//PSU Mathematics Department//Seminar iCalendar Generator//EN
VERSION:2.0
CALSCALE:GREGORIAN
METHOD:PUBLISH
X-WR-CALNAME:Combinatorics/Partitions Seminar
X-WR-TIMEZONE:America/New_York
BEGIN:VTIMEZONE
TZID:America/New_York
X-LIC-LOCATION:America/New_York
BEGIN:DAYLIGHT
TZOFFSETFROM:-0500
TZOFFSETTO:-0400
TZNAME:EDT
DTSTART:19700308T020000
RRULE:FREQ=YEARLY;BYMONTH=3;BYDAY=2SU
END:DAYLIGHT
BEGIN:STANDARD
TZOFFSETFROM:-0400
TZOFFSETTO:-0500
TZNAME:EST
DTSTART:19701101T020000
RRULE:FREQ=YEARLY;BYMONTH=11;BYDAY=1SU
END:STANDARD
END:VTIMEZONE
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20140826T111500
DTEND;TZID=America/New_York:20140826T120500
LOCATION:MB106
URL:http://www.math.psu.edu/seminars/meeting.php?id=21913
SUMMARY:Combinatorics/Partitions Seminar - TBA
DESCRIPTION:Seminar: Combinatorics/Partitions Seminar\nTitle: TBA\nAbstract
Link: http://
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20140902T111500
DTEND;TZID=America/New_York:20140902T120500
LOCATION:MB106
URL:http://www.math.psu.edu/seminars/meeting.php?id=21914
SUMMARY:Combinatorics/Partitions Seminar - TBA
DESCRIPTION:Seminar: Combinatorics/Partitions Seminar\nTitle: TBA\nAbstract
Link: http://
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20140909T111500
DTEND;TZID=America/New_York:20140909T120500
LOCATION:MB106
URL:http://www.math.psu.edu/seminars/meeting.php?id=21915
SUMMARY:Combinatorics/Partitions Seminar - Ruminations on Pages 335 and 336
in Ramanujan's Lost Notebook
DESCRIPTION:Seminar: Combinatorics/Partitions Seminar\nTitle: Ruminations o
n Pages 335 and 336 in Ramanujan's Lost Notebook\nSpeaker: Dr. Bruce Bernd
t\, University of Illinois at Urbana-Champaign\nAbstract: Pages 335 and 33
6 contain a total of four claims\, two of which\nare incorrect. Both the
correct and the incorrect "identities" have\ngenerated considerable resear
ch\, in particular\, with efforts made to find\ncorrect versions of the fa
lse formulas. At least three of the claims are\nrelated to classical unso
lved problems in analytic number theory\, the\ncircle problem\, the diviso
r problem\, and the generalized divisor problem.\nIn efforts to prove\, ex
tend\, and correct Ramanujan's claims\, we have\nproved several new theore
ms. The speaker's research has been conducted\nwith Atul Dixit\, Sun Kim
\, Arindam Roy\, and Alexandru Zaharescu.
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20140916T111500
DTEND;TZID=America/New_York:20140916T120500
LOCATION:MB106
URL:http://www.math.psu.edu/seminars/meeting.php?id=21916
SUMMARY:Combinatorics/Partitions Seminar - Singular Overpartitions
DESCRIPTION:Seminar: Combinatorics/Partitions Seminar\nTitle: Singular Over
partitions\nSpeaker: Dr. George Andrews\, PSU
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20140923T111500
DTEND;TZID=America/New_York:20140923T120500
LOCATION:MB106
URL:http://www.math.psu.edu/seminars/meeting.php?id=21917
SUMMARY:Combinatorics/Partitions Seminar - Arithmetic Properties of Andrews
' Singular Overpartitions
DESCRIPTION:Seminar: Combinatorics/Partitions Seminar\nTitle: Arithmetic Pr
operties of Andrews' Singular Overpartitions\nSpeaker: Dr. James Sellers\,
PSU\nAbstract: In a very recent work\, George Andrews defined the combina
torial objects which he called singular overpartitions with the goal of pr
esenting a general theorem for overpartitions which is analogous to theore
ms of Rogers--Ramanujan type for ordinary partitions with restricted succe
ssive ranks. As a small part of his work\, Andrews noted two congruences
modulo 3 which followed from elementary generating function manipulations.
In this talk\, we show that Andrews' results modulo 3 are two examples o
f an infinite family of congruences modulo 3 which hold for that particula
r function. Time permitting\, we will also expand the consideration of su
ch arithmetic properties to other functions which are part of Andrews' fra
mework for singular overpartitions. This is joint work with Shi-Chao Chen
and Michael D. Hirschhorn.
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20140930T111500
DTEND;TZID=America/New_York:20140930T120500
LOCATION:MB106
URL:http://www.math.psu.edu/seminars/meeting.php?id=21918
SUMMARY:Combinatorics/Partitions Seminar - Cubic Theta Functions in Two Var
iables
DESCRIPTION:Seminar: Combinatorics/Partitions Seminar\nTitle: Cubic Theta F
unctions in Two Variables\nSpeaker: Daniel Schultz\, PSU\nAbstract: By add
ing certain equianharmonic elliptic sigma functions to the coefficients of
the Borwein cubic theta functions\, an interesting set of six two-variabl
e theta functions may be derived. These theta functions invert the $F_1\\l
eft( \\frac{1}{3}\;\\frac{1}{3}\;\\frac{1}{3}\;1 |x\,y \\right)$ case of A
ppell's hypergeometric function and satisfy several identities akin to tho
se satisfied by the Borwein cubic theta functions. The work of Koike et al
. is extended and put into the context of modular equations\, resulting in
a simpler derivation of their results as well as several new modular equa
tions for Picard modular forms.
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20141007T111500
DTEND;TZID=America/New_York:20141007T120500
LOCATION:MB106
URL:http://www.math.psu.edu/seminars/meeting.php?id=21919
SUMMARY:Combinatorics/Partitions Seminar - TBA
DESCRIPTION:Seminar: Combinatorics/Partitions Seminar\nTitle: TBA\nAbstract
Link: http://
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20141014T111500
DTEND;TZID=America/New_York:20141014T120500
LOCATION:MB106
URL:http://www.math.psu.edu/seminars/meeting.php?id=21920
SUMMARY:Combinatorics/Partitions Seminar - Two problems in partitions
DESCRIPTION:Seminar: Combinatorics/Partitions Seminar\nTitle: Two problems
in partitions\nSpeaker: George Andrews\, PSU\nAbstract: The talk will cons
ider to different questions. (1) (joint work with Beck and Robbins) What i
s the nature of the generating function for partitions in which the differ
ence between largest and smallest parts is fixed? (2) (joint work with Sim
ay) Find a formula for g_m(n\,k)\, the number of partitions of n in which
k is the m-th largest summand (i.e there are exactly m-1 distinct parts (e
ach of which may be repeated arbitrarily) that are larger than k).
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20141021T111500
DTEND;TZID=America/New_York:20141021T120500
LOCATION:MB106
URL:http://www.math.psu.edu/seminars/meeting.php?id=21921
SUMMARY:Combinatorics/Partitions Seminar - TBA
DESCRIPTION:Seminar: Combinatorics/Partitions Seminar\nTitle: TBA\nAbstract
Link: http://
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20141028T111500
DTEND;TZID=America/New_York:20141028T120500
LOCATION:MB106
URL:http://www.math.psu.edu/seminars/meeting.php?id=21922
SUMMARY:Combinatorics/Partitions Seminar - Multiplicative properties of the
number of $k$-regular partitions.
DESCRIPTION:Seminar: Combinatorics/Partitions Seminar\nTitle: Multiplicativ
e properties of the number of $k$-regular partitions.\nSpeaker: Olivia Bec
kwith\nAbstract: Earlier this year\, Bessenrodt and Ono proved surprising
multiplicative properties of the partition function. In this project\, we
deal with $k$-regular partitions. Extending the generating function for $k
$-regular partitions multiplicatively to a function on $k$-regular partiti
ons\, we show that it takes its maximum at an explicitly described small n
umber of partitions\, and thus can be easily computed. The basis for this
is an extension of a classical result of Lehmer\, from which we prove an i
nequality for the number of $k$-regular partitions which seems not to have
been noticed before.
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20141104T111500
DTEND;TZID=America/New_York:20141104T120500
LOCATION:MB106
URL:http://www.math.psu.edu/seminars/meeting.php?id=21923
SUMMARY:Combinatorics/Partitions Seminar - Double-Feature: The Geometry of
Restricted Partitions and A Supercrank for P(n\,3) modulo Primes of the fo
rm 6j - 1.
DESCRIPTION:Seminar: Combinatorics/Partitions Seminar\nTitle: Double-Featur
e: The Geometry of Restricted Partitions and A Supercrank for P(n\,3) modu
lo Primes of the form 6j - 1.\nSpeaker: Brandt Kronholm and Felix Breuer
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20141111T111500
DTEND;TZID=America/New_York:20141111T120500
LOCATION:MB106
URL:http://www.math.psu.edu/seminars/meeting.php?id=21924
SUMMARY:Combinatorics/Partitions Seminar - TBA
DESCRIPTION:Seminar: Combinatorics/Partitions Seminar\nTitle: TBA\nAbstract
Link: http://
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20141118T111500
DTEND;TZID=America/New_York:20141118T120500
LOCATION:MB106
URL:http://www.math.psu.edu/seminars/meeting.php?id=21925
SUMMARY:Combinatorics/Partitions Seminar - Results on simultaneous core par
titions
DESCRIPTION:Seminar: Combinatorics/Partitions Seminar\nTitle: Results on si
multaneous core partitions\nSpeaker: Dr. Rishi Nath\, York College\, CUNY
\nAbstract: Simultaneous core partitions were first investigated in 1999 b
y J. Anderson. A recent conjecture by D. Armstrong on the average size of
a simultaneous (s\,t)-core\; and subsequent work by R. Stanley and F. Zane
llo on the (s\, s+1) (Catalan) case has renewed interest in this area.\n\n
We will survey the main results in the field--highlighting connections wit
h posets\, actions of the affine symmetric group\, and the GBG-rank--and o
ffer new results on simultaneous (s\, s+2)-cores.
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20141125T111500
DTEND;TZID=America/New_York:20141125T120500
LOCATION:MB106
URL:http://www.math.psu.edu/seminars/meeting.php?id=21926
SUMMARY:Combinatorics/Partitions Seminar - TBA
DESCRIPTION:Seminar: Combinatorics/Partitions Seminar\nTitle: TBA\nAbstract
Link: http://
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20141202T111500
DTEND;TZID=America/New_York:20141202T120500
LOCATION:MB106
URL:http://www.math.psu.edu/seminars/meeting.php?id=21927
SUMMARY:Combinatorics/Partitions Seminar - Infinitely Many Congruences Modu
lo 5 for 4-Colored Frobenius Partitions
DESCRIPTION:Seminar: Combinatorics/Partitions Seminar\nTitle: Infinitely Ma
ny Congruences Modulo 5 for 4-Colored Frobenius Partitions\nSpeaker: James
Sellers\, Penn State\nAbstract: In his 1984 AMS Memoir\, Andrews introduc
ed the family of functions c\\phi_k(n)\, which denotes the number of gener
alized Frobenius partitions of n into k colors. Recently\, Baruah and Sar
mah\, Lin\, Sellers\, and Xia established several Ramanujan-like congruenc
es for c\\phi_4(n) relative to different moduli. In this paper\, which is
joint work with Michael D. Hirschhorn of UNSW\, we employ classical resul
ts in q-series\, the well-known theta functions of Ramanujan\, and element
ary generating function manipulations to prove a characterization of c\\ph
i_4(10n+1) modulo 5 which leads to an infinite set of Ramanujan-like congr
uences modulo 5 satisfied by c\\phi_4. This work greatly extends the rece
nt work of Xia on c\\phi_4 modulo 5.
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20141209T111500
DTEND;TZID=America/New_York:20141209T120500
LOCATION:MB106
URL:http://www.math.psu.edu/seminars/meeting.php?id=21928
SUMMARY:Combinatorics/Partitions Seminar - TBA
DESCRIPTION:Seminar: Combinatorics/Partitions Seminar\nTitle: TBA\nSpeaker:
Dennis Stanton\, University of Minnesota
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20141216T111500
DTEND;TZID=America/New_York:20141216T120500
LOCATION:MB106
URL:http://www.math.psu.edu/seminars/meeting.php?id=21929
SUMMARY:Combinatorics/Partitions Seminar - TBA
DESCRIPTION:Seminar: Combinatorics/Partitions Seminar\nTitle: TBA\nAbstract
Link: http://
END:VEVENT
END:VCALENDAR