BEGIN:VCALENDAR
PRODID:-//PSU Mathematics Department//Seminar iCalendar Generator//EN
VERSION:2.0
CALSCALE:GREGORIAN
METHOD:PUBLISH
X-WR-CALNAME:Combinatorics/Partitions Seminar
X-WR-TIMEZONE:America/New_York
BEGIN:VTIMEZONE
TZID:America/New_York
X-LIC-LOCATION:America/New_York
BEGIN:DAYLIGHT
TZOFFSETFROM:-0500
TZOFFSETTO:-0400
TZNAME:EDT
DTSTART:19700308T020000
RRULE:FREQ=YEARLY;BYMONTH=3;BYDAY=2SU
END:DAYLIGHT
BEGIN:STANDARD
TZOFFSETFROM:-0400
TZOFFSETTO:-0500
TZNAME:EST
DTSTART:19701101T020000
RRULE:FREQ=YEARLY;BYMONTH=11;BYDAY=1SU
END:STANDARD
END:VTIMEZONE
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20150106T111500
DTEND;TZID=America/New_York:20150106T120500
LOCATION:MB106
URL:http://www.math.psu.edu/seminars/meeting.php?id=24733
SUMMARY:Combinatorics/Partitions Seminar - TBA
DESCRIPTION:Seminar: Combinatorics/Partitions Seminar\nTitle: TBA\nAbstract
Link: http://
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20150113T111500
DTEND;TZID=America/New_York:20150113T120500
LOCATION:MB106
URL:http://www.math.psu.edu/seminars/meeting.php?id=24735
SUMMARY:Combinatorics/Partitions Seminar - TBA
DESCRIPTION:Seminar: Combinatorics/Partitions Seminar\nTitle: TBA\nAbstract
Link: http://
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20150120T111500
DTEND;TZID=America/New_York:20150120T120500
LOCATION:MB106
URL:http://www.math.psu.edu/seminars/meeting.php?id=24737
SUMMARY:Combinatorics/Partitions Seminar - TBA
DESCRIPTION:Seminar: Combinatorics/Partitions Seminar\nTitle: TBA\nAbstract
Link: http://
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20150127T111500
DTEND;TZID=America/New_York:20150127T120500
LOCATION:MB106
URL:http://www.math.psu.edu/seminars/meeting.php?id=24739
SUMMARY:Combinatorics/Partitions Seminar - Partitions associated with the R
amanujan/Watson mock theta functions omega(q) and nu(q)
DESCRIPTION:Seminar: Combinatorics/Partitions Seminar\nTitle: Partitions as
sociated with the Ramanujan/Watson mock theta functions omega(q) and nu(q)
\nSpeaker: Ae Ja Yee\, PSU\nAbstract: Recently\, George Andrews\, Atul Dix
it\, and I have discovered very interesting partition theorems that are re
lated to the mock theta functions omega(q) and nu(q). For instance\, the g
enerating function for partitions where each part is less than twice the s
mallest part equals q times omega(q). In this talk\, I will present those
discoveries and some related arithmetic properties. This will be a prelimi
nary report on the collaboration with Andrews and Dixit.
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20150203T111500
DTEND;TZID=America/New_York:20150203T120500
LOCATION:MB106
URL:http://www.math.psu.edu/seminars/meeting.php?id=24741
SUMMARY:Combinatorics/Partitions Seminar - TBA
DESCRIPTION:Seminar: Combinatorics/Partitions Seminar\nTitle: TBA\nAbstract
Link: http://
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20150210T111500
DTEND;TZID=America/New_York:20150210T120500
LOCATION:MB106
URL:http://www.math.psu.edu/seminars/meeting.php?id=24743
SUMMARY:Combinatorics/Partitions Seminar - TBA
DESCRIPTION:Seminar: Combinatorics/Partitions Seminar\nTitle: TBA\nAbstract
Link: http://
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20150217T111500
DTEND;TZID=America/New_York:20150217T120500
LOCATION:MB106
URL:http://www.math.psu.edu/seminars/meeting.php?id=24745
SUMMARY:Combinatorics/Partitions Seminar - TBA
DESCRIPTION:Seminar: Combinatorics/Partitions Seminar\nTitle: TBA\nAbstract
Link: http://
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20150224T111500
DTEND;TZID=America/New_York:20150224T120500
LOCATION:MB106
URL:http://www.math.psu.edu/seminars/meeting.php?id=24747
SUMMARY:Combinatorics/Partitions Seminar - Incomplete elliptic integrals in
Ramanujan's lost notebook
DESCRIPTION:Seminar: Combinatorics/Partitions Seminar\nTitle: Incomplete el
liptic integrals in Ramanujan's lost notebook\nSpeaker: Daniel Schultz\, P
SU\nAbstract: On pages 51-53 of his lost notebook\, Ramanujan expressed in
tegrals of eta functions as incomplete elliptic integrals of certain quoti
ents of eta functions. I will show how these identities arise in a systema
tic manner from the classical modular curve X0(N) for several N as well gi
ve some explicit examples for the identities recorded by Ramanujan.
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20150303T111500
DTEND;TZID=America/New_York:20150303T120500
LOCATION:MB106
URL:http://www.math.psu.edu/seminars/meeting.php?id=24749
SUMMARY:Combinatorics/Partitions Seminar - Properties of a Restricted Binar
y Partition Function a la Andrews and Lewis
DESCRIPTION:Seminar: Combinatorics/Partitions Seminar\nTitle: Properties of
a Restricted Binary Partition Function a la Andrews and Lewis\nSpeaker: J
ames Sellers\, Penn State\nAbstract: In 2001\, Andrews and Lewis utilized
an identity of F. H. Jackson to derive some new partition generating funct
ions as well as identities involving some of the corresponding partition f
unctions. At the end of their paper\, they define a family of functions
$W_1(S_1\, S_2\;n)$ to be the number of partitions of $n$ into parts from
$S_1 \\cup S_2$ which do not contain both $a_j$ and $b_j$ as parts (where
$S_1 = \\left\\{ a_1\, a_2\, a_3\, \\dots\\right\\}$ and $S_2 = \\left\\{
b_1\, b_2\, b_3\, \\dots\\right\\}$ and $S_1 \\cap S_2 = \\phi$). This de
finition is motivated by the main results of their paper\; in that case\,
$S_1$ and $S_2$ contain elements in arithmetic progression with the same `
`skip value'' $k$. Our goal in this work is to consider more general exam
ples of such partition functions where $S_1$ and $S_2$ satisfy the require
ments mentioned above but do not simply contain elements in an arithmetic
progression. In particular\, we consider the situation where $S_1$ and $S
_2$ contain specific powers of $2.$ We then prove a number of arithmeti
c properties satisfied by this function using elementary generating functi
on manipulations and classic results from the theory of partitions. This
work was completed in collaboration with my undergraduate student Bin Lan.
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20150310T111500
DTEND;TZID=America/New_York:20150310T120500
LOCATION:MB106
URL:http://www.math.psu.edu/seminars/meeting.php?id=24751
SUMMARY:Combinatorics/Partitions Seminar - TBA
DESCRIPTION:Seminar: Combinatorics/Partitions Seminar\nTitle: TBA\nAbstract
Link: http://
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20150317T111500
DTEND;TZID=America/New_York:20150317T120500
LOCATION:MB106
URL:http://www.math.psu.edu/seminars/meeting.php?id=24753
SUMMARY:Combinatorics/Partitions Seminar - TBA
DESCRIPTION:Seminar: Combinatorics/Partitions Seminar\nTitle: TBA\nAbstract
Link: http://
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20150324T111500
DTEND;TZID=America/New_York:20150324T120500
LOCATION:MB106
URL:http://www.math.psu.edu/seminars/meeting.php?id=24755
SUMMARY:Combinatorics/Partitions Seminar - Asymptotics of Multidimensional
Partitions
DESCRIPTION:Seminar: Combinatorics/Partitions Seminar\nTitle: Asymptotics o
f Multidimensional Partitions\nSpeaker: Daniel Hirsbrunner\, PSU\nAbstract
: Although MacMahonâ€™s conjecture about the generating function for multi
dimensional partitions was disproved by Atkin\, et al. in 1967\, there has
been renewed interest in the asymptotic accuracy of this conjecture among
physicists since the mid 1990s. Many of the resulting publications are co
mputational in nature\, providing very suggestive data. Others make headwa
y in rigorously establishing the asymptotics of the number of multidimensi
onal partitions. The best known result is that log p_d(n) is asymptoticall
y equivalent to n^{d/(d+1)}.
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20150331T111500
DTEND;TZID=America/New_York:20150331T120500
LOCATION:MB106
URL:http://www.math.psu.edu/seminars/meeting.php?id=24757
SUMMARY:Combinatorics/Partitions Seminar - Enumeration Through Partial Bell
Polynomials
DESCRIPTION:Seminar: Combinatorics/Partitions Seminar\nTitle: Enumeration T
hrough Partial Bell Polynomials\nSpeaker: Mike Weiner\, PSU Altoona\nAbstr
act: We give a brief introduction to partial Bell polynomials and discuss
how they can be used to enumerate trees\, paths and polygon partitions. In
this talk we will focus on finding the total number of colored partitions
of a convex polygon by non-intersecting diagonals into convex polygons wi
th prescribed properties. We give explicit examples and discuss how this a
pproach unies several known results.
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20150407T111500
DTEND;TZID=America/New_York:20150407T120500
LOCATION:MB106
URL:http://www.math.psu.edu/seminars/meeting.php?id=24759
SUMMARY:Combinatorics/Partitions Seminar - TBA
DESCRIPTION:Seminar: Combinatorics/Partitions Seminar\nTitle: TBA\nAbstract
Link: http://
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20150414T111500
DTEND;TZID=America/New_York:20150414T120500
LOCATION:MB106
URL:http://www.math.psu.edu/seminars/meeting.php?id=24761
SUMMARY:Combinatorics/Partitions Seminar - TBA
DESCRIPTION:Seminar: Combinatorics/Partitions Seminar\nTitle: TBA\nAbstract
Link: http://
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20150421T111500
DTEND;TZID=America/New_York:20150421T120500
LOCATION:MB106
URL:http://www.math.psu.edu/seminars/meeting.php?id=24763
SUMMARY:Combinatorics/Partitions Seminar - TBA
DESCRIPTION:Seminar: Combinatorics/Partitions Seminar\nTitle: TBA\nAbstract
Link: http://
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20150428T111500
DTEND;TZID=America/New_York:20150428T120500
LOCATION:MB106
URL:http://www.math.psu.edu/seminars/meeting.php?id=24765
SUMMARY:Combinatorics/Partitions Seminar - TBA
DESCRIPTION:Seminar: Combinatorics/Partitions Seminar\nTitle: TBA\nAbstract
Link: http://
END:VEVENT
BEGIN:VEVENT
DTSTART;TZID=America/New_York:20150512T111500
DTEND;TZID=America/New_York:20150512T120500
LOCATION:MB106
URL:http://www.math.psu.edu/seminars/meeting.php?id=24768
SUMMARY:Combinatorics/Partitions Seminar - TBA
DESCRIPTION:Seminar: Combinatorics/Partitions Seminar\nTitle: TBA\nAbstract
Link: http://
END:VEVENT
END:VCALENDAR