Prof. R. C. Vaughan FRS Bob Vaughan

Research Interests :

My main research is in number theory, that is, the study of the properties of the whole numbers, especially by the use of analytic techniques. Particular subjects of interest are Waring's problem, the Goldbach problem, the Hardy-Littlewood method, the use of "smooth numbers", i.e. numbers without large prime factors, the distribution of prime numbers, exponential sums over integer sequences such as the sequence of primes, properties of the Riemann zeta-function and Dirichlet L-functions and diophantine approximation.

Publications

Some Photographs

Some Quotations


Number Theory Seminar


Math 401 Spring 2013                      Math 421 Fall 2004

Math 465 Spring 2013                      Math 467 Fall 2011

Math 568 Spring 2012                      Math 571 Fall 2012

Math 597e Spring 2008                    Math 567 Fall 2008   
 
Math 504 Spring 2009                      Math 572 Spring 2010


Lagrange's four square theorem                   Modular forms I              Remarks on the Selberg Sieve
The large sieve and Bombieri's theorem      Modular forms II            The Goldston, Pinzt, Yilidirim theorem
Dirichlet's theorem and Farey fractions       Continued fractions        The Geometry of Numbers
Basic Transcendence theory                        Uniform distribution       Inhomogeneous approximation