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Abstract. An important class of ‘physically relevant’ measures for
dynamical systems with hyperbolic behavior is given by Sinai–Ruelle–
Bowen (SRB) measures. We survey various techniques for constructing
SRB measures and studying their properties, paying special attention to
the geometric ‘push-forward’ approach. After describing this approach
in the uniformly hyperbolic setting, we review recent work that extends
it to non-uniformly hyperbolic systems.

It is our great pleasure to have this survey included in this special issue
dedicated to the 80th birthday of the great dynamicists D. Ruelle and Y.
Sinai. We take this opportunity to acknowledge the tremendous impact that
their work has had and continues to have in this field of research.

1. Introduction

Let f : M → M be a C1+α diffeomorphism of a compact smooth Rie-
mannian manifold M , and U ⊂ M an open subset with the property
that f(U) ⊂ U . Such a set U is called a trapping region and the set
Λ =

⋂
n≥0 f

n(U) a topological attractor for f . We allow the case Λ = M . It

is easy to see that Λ is compact, f -invariant, and maximal (i.e., if Λ′ ⊂ U is
invariant, then Λ′ ⊂ Λ). We want to study the statistical properties of the
dynamics in U . Let m denote normalized Lebesgue measure on M and let
µ be an arbitrary probability measure on Λ. The set

Bµ =

{
x ∈ U :

1

n

n−1∑
k=0

h(fk(x))→
∫

Λ
h dµ for any h ∈ C1(M)

}
is called basin of attraction of µ. We say that µ is a physical measure if
m(Bµ) > 0. An attractor with a physical measure is often referred to as a
Milnor attractor, see [34, 28].

The simplest example of a physical measure is when Λ = {p} is a single
fixed point, in which case the Dirac-delta measure δp is a physical measure
and U ⊆ Bδp . A less trivial case occurs when Λ = M and µ is an ergodic
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invariant probability measure with µ� m. Then the invariance and ergod-
icity imply, by Birkhoff’s Ergodic Theorem, that µ(Bµ) = 1 and thus the
absolute continuity immediately implies that m(Bµ) > 0.

Both of these cases are, however, quite special, and a more general sit-
uation is when Λ is a non-trivial attractor and m(Λ) = 0, in which case
any invariant measure is necessarily singular with respect to Lebesgue. In
the 1970’s Sinai, Bowen, and Ruelle constructed a special kind of physical
measures, which are now called SRB or Sinai-Ruelle-Bowen measures, to
deal with precisely this situation in the special case in which Λ is uniformly
hyperbolic. One can make sense of the definition of SRB measure in much
more general cases, and a large amount of research has been devoted in the
last several decades to establishing the existence of SRB measure for attrac-
tors Λ which are not necessarily uniformly hyperbolic. The purpose of this
note is to survey the results and techniques which have been used to prove
the existence of SRB measures in increasingly general situations, with an
emphasis on the geometric ‘push-forward’ approach.

Overview of the paper: In Section 2 we give the definition of an SRB
measures and state some of its basic properties, such as that of being a
physical measure. In Section 3 we briefly describe some of the main strategies
which have been used to construct SRB measures in various cases. In the
remaining sections we discuss in a little more details the applications of
some of these strategies to various classes of attractors: uniformly hyperbolic
attractors, as originally considered by Sinai, Ruelle, and Bowen, in Section
4, partially hyperbolic attractors in Section 5, attractors with dominated
splittings in Section 6, non-uniformly hyperbolic attractors in Section 7 and,
finally, uniformly hyperbolic attractors with singularities in Section 8.

2. Definition of SRB measures

2.1. Hyperbolic measures. We recall some important facts from non-
uniform hyperbolicity theory, referring the reader to [5] for more details.
Given x ∈ Λ and v ∈ TxM , the Lyapunov exponent of v at x is defined by

χ(x, v) = lim sup
n→∞

1

n
log ‖dfnv‖, x ∈M, v ∈ TxM.

The function χ(x, ·) takes on finitely many values, χ1(x) ≤ · · · ≤ χp(x),
where p = dimM . The values of the Lyapunov exponent are invariant
functions, i.e., χi(f(x)) = χi(x) for every i.

A Borel invariant measure µ on Λ is hyperbolic if χi(x) 6= 0 and χ1(x) <
0 < χp(x); that is

χ1(x) ≤ . . . χk(x) < 0 < χk+1(x) ≤ · · · ≤ χp(x)

for some k(x) ≥ 1. If µ is ergodic, then χi(x) = χi(µ) for almost every x.
The non-uniform hyperbolicity theory (see [5]) ensures that for a hyperbolic
measure µ and almost every x ∈ Λ, the following are true.
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(1) There is a splitting TxM = Es(x)⊕ Eu(x) where

Es(x) = Esf (x) = {v ∈ TxM : χ(x, v) < 0},
Eu(x) = Euf (x) = Esf−1(x)

are stable and unstable subspaces at x; they satisfy
(a) dfEs(x) = Es(f(x)) and dfEu(x) = Eu(f(x));
(b) ∠(Es(x), Eu(x)) ≥ K(x) for some Borel function K(x) > 0 on

Λ that satisfies condition (4) below.
(2) There are local stable V s(x) and local unstable V u(x) manifolds at

x; they satisfy

d(fn(x), fn(y)) ≤ C(x)λn(x)d(x, y), y ∈ V s(x), n ≥ 0,

d(f−n(x), f−n(y)) ≤ C(x)λn(x)d(x, y), y ∈ V u(x), n ≥ 0

for some Borel function C(x) > 0 on Λ that satisfies (4), and some
Borel f -invariant function 0 < λ(x) < 1.

(3) There are the global stable W s(x) and global unstable W u(x) mani-
folds at x (tangent to Es(x) and Eu(x), respectively) so that

W s(x) =
⋃
n≥0

f−n(V s(fnx)), W u(x) =
⋃
n≥0

fn(V u(f−nx));

these manifolds are invariant under f , i.e., f(W s(x)) = W s(f(x))
and f(W u(x)) = W u(f(x)).

(4) The functions C(x) and K(x) can be chosen to satisfy

C(f±1(x)) ≤ C(x)eε(x), K(f±1(x)) ≥ K(x)e−ε(x),

where ε(x) > 0 is an f -invariant Borel function.

(5) The size r(x) of local manifolds satisfies r(f±1(x)) ≥ r(x)e−ε(x).

One can show that W u(x) ⊂ Λ for every x ∈ Λ (for which the global unstable
manifold is defined).

Since λ(x) is invariant, it is constant µ-a.e. when µ is ergodic, so from
now on we assume that λ(x) = λ is constant on Λ.

Given ` > 1, define regular set of level ` by

Λ` =
{
x ∈ Λ : C(x) ≤ `, K(x) ≥ 1

`

}
.

These sets satisfy:

• Λ` ⊂ Λ`+1,
⋃
`≥1 Λ` = Λ;

• the subspaces Es,u(x) depend continuously on x ∈ Λ`; in fact, the
dependence is Hölder continuous:

dG(Es,u(x), Es,u(y)) ≤M`d(x, y)α,

where dG is the Grasmannian distance in TM ;
• the local manifolds V s,u(x) depend continuously on x ∈ Λ`; in fact,

the dependence is Hölder continuous:

dC1(V s,u(x), V s,u(y)) ≤ L`d(x, y)α;
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• r(x) ≥ r` > 0 for all x ∈ Λ`.

2.2. SRB measures. We can choose ` such that µ(Λ`) > 0. For x ∈ Λ`
and a small δ` > 0 set

Q`(x) =
⋃

y∈B(x,δ`)∩Λ`

V u(y).

Let ξ` be the partition of Q`(x) by V u(y), and let V s(x) be a local stable
manifold that contains exactly one point from each V u(y) in Q`(x). Then
there are conditional measures µu(y) on each V u(y), and a transverse mea-
sure µs(x) on V s(x), such that for any h ∈ L1(µ) supported on Q`(x), we
have

(2.1)

∫
h dµ =

∫
V s(x)

∫
V u(y)

h dµu(y) dµs(x).

See [20, §1.5] and references therein for further details. Let mV u(y) denote
the leaf volume on V u(y).

Definition 2.1. A measure µ on Λ is called an SRB measure if µ is hyper-
bolic and for every ` with µ(Λ`) > 0, almost every x ∈ Λ` and almost every
y ∈ B(x, δ`) ∩ Λ`, we have the measure µu(y) is absolutely continuous with
respect to the measure mV u(y).

For y ∈ Λ`, z ∈ V u(y) and n > 0 set

ρun(y, z) =
n−1∏
k=0

Jac(df |Eu(f−k(z)))

Jac(df |Eu(f−k(y)))
.

One can show that for every y ∈ Λ` and z ∈ V u(y) the following limit exists

(2.2) ρu(y, z) = lim
n→∞

ρun(y, z) =
∞∏
k=0

Jac(df |Eu(f−k(z)))

Jac(df |Eu(f−k(y)))

and that ρu(y, z) depends continuously on y ∈ Λ` and z ∈ V u(y).

Theorem 2.2 ([5], Theorems 9.3.4 and 9.3.6). If µ is an SRB measure on
Λ, then the density du(x, ·) of the conditional measure µu(x) with respect
to the leaf-volume mV u(x) on V u(x) is given by du(x, y) = ρu(x)−1ρu(x, y)
where

ρu(x) =

∫
V u(x)

ρu(x, y) dmu(x)(y)

is the normalizing factor.

In particular, we conclude that the measures µu(x) and mV u(y) must be
equivalent.

The idea of describing an invariant measure by its conditional probabilities
on the elements of a continuous partition goes back to the classical work of
Kolmogorov and especially later work of Dobrushin on random fields (see
[25]). Relation (2.2) can be viewed as an analog of the famous Dobrushin-
Lanford Ruelle equation in statistical physics, see [29] and [44].
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2.3. Ergodic properties of SRB measures. Using results of nonuniform
hyperbolicity theory one can obtain a sufficiently complete description of
ergodic properties of SRB measures.

Theorem 2.3. Let f be a C1+α diffeomorphism of a compact smooth man-
ifold M with an attractor Λ and let µ be an SRB measure on Λ. Then there
are Λ0,Λ1,Λ2, · · · ⊂ Λ such that

(1) Λ =
⋃
i≥0 Λi, Λi ∩ Λj = ∅;

(2) µ(Λ0) = 0 and µ(Λi) > 0 for i > 0;
(3) f |Λi is ergodic for i > 0;
(4) for each i > 0 there is ni > 0 such that Λi =

⋃ni
j=1 Λi,j where the

union is disjoint (modulo µ-null sets), f(Λi,j) = Λi,j+1, f(Λni,1) =
Λi,1 and fni |Λi,1 is Bernoulli;

(5) if µ is ergodic, then the basin of attraction Bµ has positive Lebesgue
measure in U .

For smooth measures this theorem was proved by Pesin in [36] and an
extension to the general case was given by Ledrappier in [30] (see also [5]).

We stress that the final item of Theorem 2.3 can be paraphrased as follows:
ergodic SRB measures are physical. The example of an attracting fixed point
illustrates that the converse is not true; a more subtle example is given by
the time-1 map of the flow illustrated in Figure 1, where the Dirac measure
at the hyperbolic fixed point p is a hyperbolic physical measure whose basin
of attraction includes all points except q1 and q2. (In fact, by slowing down
the flow near p, one can adapt this example so that p is an indifferent fixed
point and hence, the physical measure is not even hyperbolic.)

p
q1

q2

Figure 1. A physical measure that is not SRB.

Returning to our discussion of SRB measures, one can show that a mea-
sure µ on Λ of positive entropy is an SRB measure if and only if the entropy
hµ(f) of µ is given by the entropy formula:

hµ(f) =

∫
Λ

∑
χi(x)>0

χi(x) dµ(x).

For smooth measures (which are a particular case of SRB measures) the
entropy formula was proved by Pesin [36] (see also [5]) and its extension to
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SRB measures was given by Ledrappier and Strelcyn [31]. The fact that a
hyperbolic measure satisfying the entropy formula is an SRB measure was
shown by Ledrappier [30]. 1

It follows from Theorem 2.3 that f admits at most countably many ergodic
SRB measures. It is shown in [40] that a topologically transitive C1+α

surface diffeomorphism can have at most one SRB measure but the result is
not true in dimension higher than two, see Section 5.4.

3. Approaches to the construction of SRB measures

There exist at least three distinct arguments for the construction of SRB
measures. In this section we briefly describe these approaches and mention
the different settings in which they have been applied. Then beginning in
§4 we give some more details of specific results and of the inner workings of
each of the arguments.

The first approach, used by Sinai, Ruelle, and Bowen in their pioneering
work, is based on the non-trivial fact that uniformly hyperbolic attractors
admit a finite Markov partition and consequently a symbolic coding by a
subshift of finite type (SFT). This coding makes it possible to translate ques-
tions about invariant measures for the diffeomorphism f into the language
of symbolic dynamics, and hence to borrow results from statistical mechan-
ics regarding Gibbs measures and equilibrium states for certain potential
functions ϕ : Λ → R. Of particular importance is the potential function
ϕ = − log | det dfu|, where det dfu denotes the determinant of the differen-
tial of f restricted to the “unstable” subspace of the uniformly hyperbolic
system; Gibbs measures for ϕ correspond to SRB measures for (Λ, f).

We give a rough outline of the symbolic approach.

(1) Use a finite Markov partition to code (Λ, f) by a two-sided SFT
Σ ⊂ AZ, where A is a finite alphabet.

(2) Pass from Σ to the corresponding one-sided shift Σ+ ⊂ AN; roughly
speaking, this corresponds to identifying points on Λ that lie on the
same local stable manifold.

(3) Consider a certain transfer operator associated to Σ+ and the poten-
tial function, and obtain a Gibbs measure in terms of the eigendata
of this operator using Perron–Frobenius theory.

(4) Project this Gibbs measure on Σ+ to an SRB measure on Λ.

1Our definition of SRB measure includes the requirement that the measure is hyper-
bolic. In fact, one can extend the notion of SRB measures to those that are non-uniformly
partially hyperbolic. In this case some Lyapunov exponents can be zero but there must be
at least one positive Lyapunov exponent. It was proved by Ledrappier and Young [32] that
a non-uniformly partially hyperbolic measure satisfies the entropy formula if and only if
it is an SRB measure in this more general sense. We stress that a non-uniformly partially
hyperbolic SRB measure may not be physical, i.e., its basin may be of zero Lebesgue
measure.



THE GEOMETRIC APPROACH FOR CONSTRUCTING SRB MEASURES 7

The extension of this argument to more general attractors which are not
uniformly hyperbolic, or even to uniformly hyperbolic systems with singu-
larities, is made more challenging by the fact that one cannot hope to have
finite Markov partitions in more general settings. Even though one can con-
struct countable Markov partitions in some settings, the theory of Gibbs
measures for shift maps on countable symbolic spaces is not as complete as
for finite symbolic spaces, and thus some new ideas are needed in order to
generalize this approach to the construction of SRB measures.

It is worth mentioning that the heart of the symbolic approach lies in the
application of Perron–Frobenius theory by finding the appropriate Banach
space on which the transfer operator acts with a spectral gap, and that
for uniformly hyperbolic systems, this functional analytic strategy can in
fact be carried out without relying on symbolic dynamics [10]. The key is
to identify the right Banach space; roughly speaking one should consider
objects that behave like smooth functions along the unstable direction, and
like measures (or more generally, distributions) along the stable direction.

An alternative to the functional analytic approach, which is more “geo-
metric”, was developed in [38] to deal with partially hyperbolic attractors for
which Markov partitions do not exist and the above symbolic approach fails
(we describe the result in [38] more precisely in Section 5 below). The idea
here is to follow the classical Bogolyubov-Krylov procedure for constructing
invariant measures by pushing forward and a given reference measure. In
our case the natural choice of a reference measure is the Riemannian vol-
ume m restricted to the neighborhood U , which we denote by mU . We then
consider the sequence of probability measures

(3.1) µn =
1

n

n−1∑
k=0

fk∗mU .

Any weak* limit point of this sequence of measures is called a natural mea-
sure and while in general, it may be a trivial measure, under some additional
hyperbolicity requirements on the attractor one obtains an SRB measure.

For attractors with some hyperbolicity one can use a somewhat different
approach which exploits the fact that SRB measures are absolutely con-
tinuos along unstable manifolds. To this end consider a point x ∈ Λ, its
local unstable manifold V u(x), and take the leaf-volume mV u(x) as the ref-
erence measure for the above construction. Thus one studies the sequence
of probability measures given by

(3.2) νn =
1

n

n−1∑
k=0

fk∗mV u(x).

The measures νn are spread out over increasingly long pieces of the global
unstable manifold of the point fn(x) and, in some situations, control over
the geometry of the unstable manifold makes it possible to draw conclusions
about the measures νn by keeping track of their densities along unstable
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manifolds, and ultimately to demonstrate that any weak-star limit of νn is
in fact an SRB measure. This approach applies to the uniformly hyperbolic
setting, as an alternative to the symbolic coding approach, as we will discuss
in Section 4. It can also be applied to significantly more general situations
such as partially hyperbolic and non-uniformly hyperbolic settings, which
we discuss in Sections 5–7.

Before discussing the key ideas necessary to extend either approach to the
non-uniformly hyperbolic situation, we pause to describe the relationship
between these two approaches. Because the definition of SRB measure is
so closely tied to the unstable direction, any approach to constructing SRB
measures must somehow work with the unstable direction and ignore the
stable one (at least at certain stages).

• In the symbolic approach, this is done in Step 2 by passing from Σ to
Σ+; for shift spaces, the location of a point along a stable manifold
is encoded in the negative indices, while a location along an unstable
manifold is encoded in the positive indices.
• In the geometric approach, we privilege the unstable direction by

working with mV u(x) (instead of mV s(x)) and by keeping track of
densities along unstable manifolds.

Next one must take the dynamics of f into account; after all, we are looking
for an invariant measure.

• In the symbolic approach, this is done via the transfer operator,
which acts on the space of Hölder continuous functions on Σ+, viewed
as densities of a measure.
• In the geometric approach, this is done via the time-averaging pro-

cess in (3.2).

Now suppose we wish to extend these approaches to settings with non-
uniformly hyperbolic dynamics. Both approaches rely on having uniform
expansion and contraction properties, and as we will see in Sections 5–7,
the key to extending the second (geometric) approach to the non-uniformly
hyperbolic setting is to restrict one’s attention to orbit segments where ex-
pansion and contraction occur uniformly (in a sense that will be made pre-
cise). That is, instead of considering all iterates fk(x), one considers only
hyperbolic times; that is, values of k such that fk has some uniformly hy-
perbolic properties at x (the set of such times depends on the point where
the orbit starts).

In a number of situations, it has proven possible to combine this idea
with the symbolic coding techniques from the first approach, which leads us
to the third approach, based on the concept of inducing. If Γ ⊆ Λ is some
appropriately chosen subset, and τ : Γ → N is an inducing time, or return
time, function, i.e., f τ(x)(x) ∈ Γ for every (or almost every) x ∈ Γ, then

we can define the induced map F : Γ → Γ by F (x) = f τ(x)(x). The point
here is that it may be possible to choose Γ with a much more amenable and
regular geometric structure than the attractor Λ as a whole, and that it may
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be possible to choose a return time function τ such that the induced map
F has some good properties, for example F may be (piecewise) uniformly
hyperbolic. In these conditions we can then construct an SRB measures
for F and by elementary and standard arguments, under some integrability
conditions on the inducing time τ , use this to obtain an SRB measure for
f . The general notion of inducing is quite classical in ergodic theory but
the specific application to SRB measures was first applied in the setting of
certain Hénon maps [8] and developed as a general theory by Young [48],
from which specific kinds of induced maps required for SRB measures are
often refereed to as Young towers.

Although the Young Tower approach is in principle more involved and
complicated than the geometric “push-forward” approach, it has the advan-
tage that the symbolic structure allows an application of techniques from
functional analysis and spectra theory that give significantly more informa-
tion about the structure and properties of SRB measure, including informa-
tion on the statistical properties such as decay of correlations.

Our main focus in the remainder of this paper will be the geometric ap-
proach. The symbolic approach (for finite alphabets) is very well described
in the original literature (see especially [17]). We will also discuss some
results related to Young towers.

To carry out the construction of SRB measures using the push-forward
geometric approach one needs certain information on the dynamics and ge-
ometry of “unstable” admissible manifolds and their images.2 In particular,
this includes hyperbolicity. If it is uniform one can carry out the construction
without too much trouble, see Section 4. If hyperbolicity is not uniform, one
may still hope to have the following.

(1) Domination: if one of the directions does not behave hyperbolically,
then it at least is still dominated by the other direction.

(2) Separation: the stable and unstable directions do not get too close
to each other, more precisely, there is a “good” way to control how
close they can be.

In the case of attractors with dominated splittings (see Section 6) these two
conditions hold uniformly and so one only needs to control the asymptotic
hyperbolicity (expansion and contraction along stable and unstable direc-
tions). In the more general non-uniformly hyperbolic case both domination
and separation may fail at some points, and in order to control the geom-
etry and dynamics of images of admissible manifolds, one needs to replace
“hyperbolicity” with “effective hyperbolicity”, see Section 7.

4. SRB measures for uniformly hyperbolic attractors

4.1. Definition of hyperbolic attractors. Consider a topological attrac-
tor Λ for a diffeomorphism f of a compact smooth manifold M . It is called

2In the setting of non-uniform hyperbolicity, “unstable” admissible manifolds are used
as substitutions for local unstable manifolds.
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(uniformly) hyperbolic if for each x ∈ Λ there is a decomposition of the tan-
gent space TxM = Es(x)⊕ Eu(x) and constants c > 0, λ ∈ (0, 1) such that
for each x ∈ Λ:

(1) ‖dxfnv‖ ≤ cλn‖v‖ for v ∈ Es(x) and n ≥ 0;
(2) ‖dxf−nv‖ ≤ cλn‖v‖ for v ∈ Eu(x) and n ≥ 0.

Es(x) and Eu(x) are stable and unstable subspaces at x. One can show that
Es(x) and Eu(x) depend continuously on x.

In particular, ∠(Es(x), Eu(x)) is uniformly away from zero. In fact, Es(x)
and Eu(x) depend Hölder continuously on x.

For each x ∈ Λ there are V s(x) and V u(x) stable and unstable local
manifolds at x. They have uniform size r, depend continuously on x in the
C1 topology and V u(x) ⊂ Λ for any x ∈ Λ.

We describe an example of a hyperbolic attractor. Consider the solid
torus P = D2 × S1. We use coordinates (x, y, θ) on P ; x and y give the
coordinates on the disc, and θ is the angular coordinate on the circle. Fixing
parameters a ∈ (0, 1) and α, β ∈ (0,min{a, 1− a}), define a map f : P → P
by

f(x, y, θ) = (αx+ a cos θ, βy + a sin θ, 2θ).

P is a trapping region and Λ =
⋂
n≥0 f

n(P ) is the attractor for f , known as
the Smale-Williams solenoid.

4.2. Existence of SRB measures for hyperbolic attractors. The fol-
lowing result establishes existence and uniqueness of SRB measures for tran-
sitive hyperbolic attractors.

Theorem 4.1. Assume that f is C1+α and that Λ is a uniformly hyperbolic
attractor. The following statements hold:

(1) Every limit measure of either the sequence of measures µn (given by
(3.1)) or the sequence of measures νn (given by (3.2)) is an SRB
measure on Λ.

(2) There are at most finitely many ergodic SRB measures on Λ.
(3) If f |Λ is topologically transitive, then there is a unique SRB-measure

µ on Λ, which is the limit of both sequences µn and νn; moreover,
Bµ has full measure in U .

This theorem was proved by Sinai, [43] for the case of Anosov diffeomor-
phisms, Bowen, [17] and Ruelle [41] extended this result to hyperbolic at-
tractors, and Bowen and Ruelle, [18] constructed SRB measures for Anosov
flows.

We outline a proof of this theorem to demonstrate how the geometric
approach works; further details can be found in [22]. Note that the geometric
proof we give here is not the original proof given by Sinai, Bowen, and Ruelle,
who used the symbolic approach. Given x ∈ M , a subspace E(x) ⊂ TxM ,
and a(x) > 0, the cone at x around E(x) with angle a(x) is

K(x,E(x), a(x)) = {v ∈ TxM : ](v,E(x)) < a(x)}.
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There exists a neighborhood Ũ ⊂ U of the attractor Λ and two continuous
cone families Ks(x) = Ks(x,Es(x), a) and Ku(x) = Ku(x,Eu(x), a) such
that3

df(Ku(x)) ⊂ Ku(f(x)) for all x ∈ Ũ ,

df−1(Ks(f(x))) ⊂ Ks(x) for all x ∈ f(Ũ).

Let W ⊂ U be an admissible manifold ; that is, a submanifold that is tangent
to an unstable cone Ku(x) at some point x ∈ U and has a fixed size and
uniformly bounded curvature. More precisely, fix constants γ, κ, r > 0, and
define a (γ, κ)-admissible manifold of size r to be V (x) = expx graphψ,
where ψ : BEu(x)(0, r) = B(0, r) ∩ Eu(x)→ Es(x) is C1+α and satisfies

(4.1)

ψ(0) = 0 and dψ(0) = 0,

‖dψ‖ := sup
‖v‖<r

‖dψ(v)‖ ≤ γ,

|dψ|α := sup
‖v1‖,‖v2‖<r

‖dψ(v1)− dψ(v2)‖
‖v1 − v2‖α

≤ κ.

Write I = (γ, κ, r) for convenience and consider the space of admissible
manifolds

RI = {expx(graphψ) : x ∈ U,ψ ∈ C1(Bu(0, r), Es(x)) satisfies (4.1)}.

Given an admissible manifold W , we consider a standard pair (W,ρ) where
ρ is a continuous “density” function on W . The idea of working with pairs
of admissible manifolds and densities was introduced by Chernov and Dol-
gopyat [19] and is an important recent development in the study of SRB
measures via geometric techniques.

Now we fix L > 0, write K = (I, L), and consider the space of standard
pairs

R′K = {(W,ρ) : W ∈ RI, ρ ∈ Cα(W, [ 1
L , L]), |ρ|α ≤ L}.

These spaces are compact in the natural product topology: the coordinates
in RI are

{x ∈M,ψ ∈ C1(Bu(0, r), Es(x)) with ‖Dψ‖ ≤ γ, |Dψ|α ≤ κ}

and the coordinates in R′K are

{x, ψ, ρ ∈ Cα(W ) with ‖ρ‖α ≤ L}.

A standard pair determines a measure Ψ(W,ρ) on U in the obvious way:

Ψ(W,ρ)(E) :=

∫
E∩W

ρ dmW .

3Note that the subspaces Es(x) and Eu(x) for x ∈ Ũ need not be invariant under df .
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Moreover, each measure η on R′K determines a measure Φ(η) on U by

(4.2)

Φ(η)(E) =

∫
R′K

Ψ(W,ρ)(E) dη(W,ρ)

=

∫
R′K

∫
E∩W

ρ(x) dmW (x) dη(W,ρ).

(Compare this to (2.1) in the definition of conditional measures.) Write
M(U) and M(R′K) for the spaces of finite Borel measures on U and R′K,

respectively. It is not hard to show that Φ: M(R′K)→M(U) is continuous;
in particular,MK = Φ(M≤1(R′K)) is compact, where we writeM≤1 for the
space of measures with total weight at most 1.

On a uniformly hyperbolic attractor, an invariant probability measure is
an SRB measure if and only if it is in MK for some K.

Consider now the leaf volume mW on W that we view as a measure on
Ū . Its evolution is the sequence of measures

(4.3) κn =
1

n

n−1∑
k=0

fk∗mW .

By weak* compactness there is a subsequence κnk
that converges to an

invariant measure µ on Λ which is an SRB measure.
Consider the images fn(W ) and observe that for each n, the measure

fn∗mW is absolutely continuous with respect to leaf volume on fn(W ). For
every n, the image fn(W ) can be covered with uniformly bounded multi-
plicity (this requires a version of the Besicovitch covering lemma) by a finite
number of admissible manifolds Wi, so that

(4.4) fn∗mW is a convex combination of measures ρi dmWi ,

where ρi are Hölder continuous positive densities on Wi.
We see from (4.4) that MK is invariant under the action of f∗, and

thus κn ∈ MK for every n. By compactness of MK, one can pass to a
subsequence κnk

which converges to a measure µ ∈ MK, and this is the
desired SRB measure.

Choosing W = V u(x), x ∈ Λ we obtain that any limit measure of the
sequence νn (see (3.2)) is an SRB measure. It is then not difficult to derive
from here that any limit measure of the sequence µn (see (3.1)) is an SRB
measure.

In the particular case when Λ = M (that is, f is a C1+α Anosov diffeo-
morphism) and f is transitive, the above theorem guarantees existence and
uniqueness of the SRB measure µ for f . Reversing the time we obtain the
unique SRB measure ν for f−1. One can show that µ = ν if and only if µ is
a smooth measure.
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5. SRB measures for partially hyperbolic attractors

5.1. Definition of partially hyperbolic attractors. Consider a topo-
logical attractor Λ for a diffeomorphism f of a compact smooth manifold
M . It is called (uniformly) partially hyperbolic if for each x ∈ Λ there is
a decomposition of the tangent space TxM = Es(x) ⊕ Ec(x) ⊕ Eu(x) and
numbers 0 < λ < λ1 ≤ λ2 < λ−1 and c > 0 such that for n ≥ 0:

(1) ‖dxfnv‖ ≤ cλn‖v‖ for v ∈ Es(x);
(2) c−1λn1‖dxfnv‖ ≤ cλn2‖v‖;
(3) ‖dxf−nv‖ ≤ cλn‖v‖ for v ∈ Eu(x).

Here Es(x), Ec(x) and Eu(x) are strongly stable, central and strongly unsta-
ble subspaces at x. They depend (Hölder) continuously on x. In particular,
the angle between any two of them is uniformly away from zero.

For each x ∈ Λ there are V s(x) and V u(x), the strongly stable and strongly
unstable local manifolds at x. They have uniform size r, depend continuously
on x in the C1 topology and V u(x) ⊂ Λ for any x ∈ Λ.

A simple example of a partially hyperbolic attractor is a map which is the
direct product of a map f with a hyperbolic attractor Λ and the identity
map Id of any manifold.

5.2. u-measures. In light of the absolute continuity condition for SRB mea-
sures, the following definition for a partially hyperbolic system is natural. A
measure µ on Λ is called a u-measure if for every x ∈ Λ and y ∈ B(x, δ)∩Λ,
we have µu(y) ∼ mV u(y). (Recall that µ ∼ ν if µ� ν and ν � µ).

Theorem 5.1 ([38]). Any limit measure of the sequence of measures µn
(see (3.1)) is a u-measure and so is any limit measure of the sequence of
measures νn (see (3.2)).

This theorem is a generalization of Theorem 4.1 in the uniformly hyper-
bolic case and its proof uses the “push-forward” techniques. Indeed, recall-
ing the definition of the push-forward of a measure we have fk∗mV u(x)(A) =

mV u(x)(f
−k(A)) = mV u(x)({x : fk(x) ∈ A}) and hence, the measures

fk∗mV u(x) are supported on the image fk(V u(x)) of the starting chosen piece
of local unstable manifold. If f is uniformly expanding along Eu one can
divide up V u(x) into pieces, each of which grows to large scale with bounded
distortion at time k, and thus fk∗mV u(x) is supported on some collection of
uniformly large unstable disks. Therefore, the same is true for measures νn
in (3.2) and this is the crucial property used to show that any limit measure
µ has absolutely continuous conditional measures along unstable leaves and
therefore is an SRB measures (see Section 4.2).

One can prove the following basic properties for u-measures.

(1) Any measure whose basin has positive volume is a u-measure, [15].
(2) If there is a unique u-measure for f , then its basin has full volume

in the topological basin of attraction, [24].
(3) Every ergodic component of a u-measure is again a u-measure, [15].
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The first of these says that for a partially hyperbolic attractor, every physical
measure is a u-measure. In particular, every SRB measure is a u-measure.
What about the converse implications? Are u-measures physical? When is
a u-measure an SRB measure? We address these questions next.

5.3. u-measures with negative central exponents. We say that f has
negative (positive) central exponents (with respect to µ) if there exists an
invariant subset A ⊂ Λ with µ(A) > 0 such that the Lyapunov exponents
χ(x, v) < 0 (respectively, χ(x, v) > 0) for every x ∈ A and every vector
v ∈ Ec(x).

If f has negative central exponents on a set A of full measure with respect
to a u-measure µ, then µ is an SRB measure for f .

Theorem 5.2 ([12]). Assume that f has negative central exponents on an
invariant set A of positive measure with respect to a u-measure µ for f .
Then the following statements hold:

(1) Every ergodic component of f |A of positive µ-measure is open (mod 0);
in particular, the set A is open (mod 0) (that is there exists an open
set U such that µ(A4U) = 0).

(2) If for µ-almost every x the trajectory {fn(x)} is dense in supp(µ),
then f is ergodic with respect to µ.

We provide the following criterion, which guarantees the density assump-
tion in Statement (2) of the previous theorem.

Theorem 5.3. Assume that for every x ∈ Λ the orbit of the global strongly
unstable manifold W u(x) is dense in Λ. Then for any u-measure µ on Λ
and µ-almost every x the trajectory {fn(x)} is dense in Λ.

This result is an immediate corollary of the following more general state-
ment. Given ε > 0, we say that a set is ε-dense if its intersection with any
ball of radius ε is not empty.

Theorem 5.4 ([12]). Let f be a C1 diffeomorphism of a compact smooth
Riemannian manifold M possessing a partially hyperbolic attractor Λ. The
following statements hold:

(1) For every δ > 0 and every ε ≤ δ the following holds: assume that for
every x ∈ Λ the orbit of the global strongly unstable manifold W u(x)
is ε-dense in Λ. Then for any u-measure µ on Λ and µ-almost every
x the trajectory {fn(x)} is δ-dense in Λ.

(2) Assume that for every x ∈ Λ the orbit of the global strongly unstable
manifold W u(x) is dense in Λ. Then supp(µ) = Λ for every u-
measure µ.

In light of the ‘negative central exponent’ hypothesis in Theorem 5.2, it
is natural to ask whether a corresponding result holds for an attractor with
positive central exponents. This case turns out to be more difficult since it
is easier to handle non-uniformities in the contracting part of the dynamics
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than it is to handle non-uniformities in the expanding part of the dynamics.
We discuss this situation in more detail in Section 6 but mention here that
the study of u-measures with positive central exponents was carried out in
[3, 4] under the stronger assumption that there is a set of positive volume
in a neighborhood of the attractor with positive central exponents.

5.4. Uniqueness of u-measures and SRB measures. In the case of a
hyperbolic attractor, topological transitivity of f |Λ guarantees that there
is a unique u-measure for f on Λ. In contrast, in the partially hyperbolic
situation, even topological mixing is not enough to guarantee that there is
a unique u-measure. Indeed, consider F = f1 × f2, where f1 is a topolog-
ically transitive Anosov diffeomorphism and f2 a diffeomorphism close to
the identity. Then F is partially hyperbolic, and any measure µ = µ1 × µ2,
where µ1 is the unique SRB measure for f1 and µ2 any f2-invariant measure,
is a u-measure for F . Thus, F has a unique u-measure if and only if f2 is
uniquely ergodic. On the other hand, F is topologically mixing if and only
if f2 is topologically mixing.

Theorem 5.5 ([12]). Let f be a C1+α diffeomorphism of a compact smooth
Riemannian manifold M possessing a partially hyperbolic attractor Λ. As-
sume that:

(1) there exists a u-measure µ for f with respect to which f has neg-
ative central exponents on an invariant subset A ⊂ Λ of positive
µ-measure;

(2) for every x ∈ Λ the orbit of the global strongly unstable manifold
W u(x) is dense in Λ.

Then µ is the only u-measure for f and f has negative central exponents at
µ-almost every x ∈ Λ. In particular, (f, µ) is ergodic, supp(µ) = Λ, and the
basin Bµ has full volume in the topological basin of attraction of Λ. µ is the
only SRB measure for f .

Let us comment on the assumption of this theorem. Shub and Wilkinson
[45] considered the direct product F0 = f × Id, where f is a linear Anosov
diffeomorphism and the identity acts on the circle. The map F0 preserves
volume. They showed that arbitrary close to F0 (in the C1 topology) there
is a volume-preserving diffeomorphism F whose only central exponent is
negative on the whole of M . The result continues to hold for any small
perturbation of F .

Bonatti and Diaz [13] have shown that there is an open set of transitive
diffeomorphisms near F0 = f × Id (f is an Anosov diffeomorphism and Id
is the identity map of any manifold) as well as near the time-1 map F0 of a
topologically transitive Anosov flow. This result was used by Bonatti, Diaz
and Ures [14] to construct examples of partially hyperbolic systems with
minimal unstable foliation (i.e., every unstable leaf is dense in the manifold
itself).
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If f is a small perturbation of F0 then f is partially hyperbolic and by [27],
the central distribution of f is integrable. Furthermore, the central leaves
are compact in the first case (when F0 = f×Id) and there are compact leaves
in the second case (when F0 is the time-1 map of a topologically transitive
Anosov flow). It is shown in [12] that if there is a compact periodic central
leaf C for f such that fn(C) = C and the restriction fn|C is a minimal
transformation, then the unstable foliation for f is minimal.

5.5. Stable ergodicity for dissipative maps. Let Λf be a topological
attractor for a diffeomorphism f . We say that f is stably ergodic if there
exists a neighborhood U of f in Diffr(M), r ≥ 1 such that any diffeomor-
phism g ∈ U possesses a topological attractor Λg and there is a unique SRB
measure µg on Λg (and hence, g is ergodic with respect to µg). This is
an analog of the notion of stable ergodicity of systems preserving a given
smooth measure, which was introduced by Pugh and Shub, [39]. For systems
with topological attractors smooth measures are replaced by (unique) SRB
measures.

If the attractor Λf is (partially) hyperbolic then there exists a neighbor-

hood U of f in Diff1(M) such that any diffeomorphism g ∈ U possesses a
(partially) hyperbolic attractor Λg.

Theorem 5.6 ([12]). Let Λf be a partially hyperbolic attractor for a diffeo-
morphism f . If f satisfies the conditions of Theorem 5.5, then f is stably
ergodic with r = 1 + α.

The stable ergodicity of partially hyperbolic attractors with positive cen-
tral exponents was studied by Vásquez [46] who proved a result similar
to Theorem 5.6 under the stronger requirement that there is a unique u-
measure with positive central exponents on a subset of full measure.

6. SRB measures for attractors with dominated splitting

Let f be a C1+α diffeomorphism and A a forward-invariant compact set.
A splitting

TAM = Ecs ⊕ Ecu

is dominated if there is χ < 1 such that

‖df |Es(x)‖ < χ‖df |−1
Eu(x)‖

−1

for all x ∈ A. The set

Λ =

∞⋂
j=0

f j(A)

is an attractor for f with dominated splitting.

Remark 6.1. We note that the domination condition does not imply anything
about whether the derivative is contracting or expanding in each of the sub-
bundles, but just that it is contracting in Ecs relative to Ecu. There are no
general results on the existence of SRB measures for dominated splitting in
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full generality, but only with some additional assumptions, including that
either Ecs is uniformly contracting or that Ecu is uniformly expanding. It
will be useful to distinguish these two cases by using the notation

(6.1) TAM = Es ⊕ Ecu and TAM = Ecs ⊕ Eu

respectively. Notice that if Ecs is uniformly contracting and Ecu is uniformly
expanding then we are in the uniformly hyperbolic situation with a splitting
TAM = Es⊕Eu. A partially hyperbolic splitting TAM = Es⊕Ec⊕Eu is also
a special case of dominated decomposition since we can combine the central
bundle with either the stable one to get a dominated splitting of the form
TAM = Ecs ⊕Eu where Ecs = Es ⊕Ec or combine the central bundle with
the unstable one to get a splitting of the form TAM = Es⊕Ecu where Ecu =
Ec⊕Eu. We emphasize however that dominated decompositions, even under
the additional assumptions that one of the two bundles is uniform, does not
imply that the center-stable bundle Ecs or the center-unstable bundle Ecu

can be further split into a center bundle Ec and either a stable or unstable
bundle. This additional splitting can play a key role in some results about
partially hyperbolic attractors which therefore do not immediately extend
to attractors with dominated splittings.

The existence of SRB measures has been proved for attractors with dom-
inated splittings of the form (6.1) as long there is also some degree of (non-
uniform) contraction or expansion in the center-stable or center-unstable
bundles respectively.

Theorem 6.2 ([16]). Let f : M → M be a C1+α diffeomorphism, A a
forward invariant compact set with m(A) > 0 on which f admits a dominated
splitting of the form

TAM = Ecs ⊕ Eu

and suppose that the dynamics on Ecs is nonuniformly contracting:

(6.2) lim sup
n→+∞

1

n
log ‖dfn|Ecsx ‖ < 0

for all x ∈ A. Then f has finitely many ergodic SRB measures and the
union of their basins has full Lebesgue measure in the topological basin of A.

This theorem can be proved by a “push-forward” argument that essen-
tially follows the lines of the proof of Theorems 4.1 and 5.5 in the uniformly
(completely or partially) hyperbolic case. The full definition of SRB mea-
sure requires some (possibly nonuniform) hyperbolicity (i.e., contraction and
expansion in all directions) in order to guarantee existence and absolute con-
tinuity of the stable foliation which in turns guarantees that the measure is a
physical measure. Condition (6.2) bridges this gap and yields the statement
of Theorem 6.2.

Theorem 6.3 ([3, 4]). Let f : M → M be a C1+α diffeomorphism, A a
forward invariant compact set with m(A) > 0 on which f admits a dominated
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splitting of the form

TAM = Es ⊕ Ecu

and suppose that the dynamics on Ecu is nonuniformly expanding:

(6.3) lim sup
n→+∞

1

n

n∑
j=1

log(‖df−1|Ecufj(x)‖
−1) > ε

for some ε > 0 and for all x ∈ A. Then f has finitely many ergodic SRB
measures and the union of their basins has full Lebesgue measure in the
topological basin of A.

This result was first proved in [3] under the slightly stronger assumption
obtained by replacing lim sup by lim inf in (6.3). Because the expansion
along Ecu is nonuniform, the argument there uses a more sophisticated ver-
sion of the geometric “push-forward” argument of Lebesgue measure mV u(x)

on the local unstable manifolds than the one outlined in Section 5.2.
Indeed, it is not longer true that for every k we can divide V u(x) into

pieces each of which grows to large scale with bounded distortion at time k.
Instead this will be true just for some points in V u(x), precisely those for
which k is a hyperbolic time. The images at time k of other parts of V u(x)
may be very small and/or very distorted. In particular it is no longer the case
that fk∗ (V u(x)) is supported on a collection of uniformly large unstable disks.
Nevertheless some points do eventually have hyperbolic times and therefore
it is the case that some part of the measures fk∗ (V u(x)), and therefore some
part of the measures νn, are supported on some such collection of uniformly
large unstable disk. Thus it is possible to write the measures νn as

νn = ν ′n + ν ′′n

where ν ′n is the “good” part of the measure supported on a collection of
uniformly large unstable disks and µ′′n is the “bad” part on which we have
little control. The strengthened version of condition (6.3), with a lim inf
instead of a lim sup, implies that almost every point has a positive density
of hyperbolic times and thus the good part of the measure µ′n forms a pro-
portion of the overall measure µn that is uniformly bounded below in n and
it is therefore possible to essentially recover a version of the original argu-
ment of Sinai, Ruelle, Bowen and show that there exists a limit measure µ′

which has absolutely continuous conditional measures and is therefore an
SRB measure (see more details in the outline of the proof of Theorem 7.2).

Replacing the liminf by a limsup as stated in condition (6.3) still implies
an infinite number of hyperbolic times and this still allows us to split the
measures into ν ′n and ν ′′n, but does not imply a positive density of hyperbolic
times and thus makes it impossible to obtain a uniform lower bound for the
mass of the measures ν ′n and to complete the proof using the natural “push-
forward” argument. The full proof of Theorem 6.3 is thus obtained in [4]
using the inducing or Young tower approach mentioned above. In certain
respects there are of course still some similarities with the classical approach
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in the sense that the Young tower structure also relies on constructing some
region where large unstable disks accumulate, and defining an induced map
on this region. The problem of the low asymptotic frequency of hyperbolic
times does not disappear in this approach but is rather “translated” into
the problem of integrability of the return times, which can be resolved by
using a different kind of argument.

7. SRB measures for non-uniformly hyperbolic attractors

If µ is an SRB measure, then every point in the positive Lebesgue measure
set Bµ has non-zero Lyapunov exponents. A natural and interesting question
is whether the converse holds true, in essence formulated in the following
conjecture by Viana, [47]:

Conjecture 7.1. If a smooth map has only non-zero Lyapunov exponents
at Lebesgue almost every point, then it admits an SRB measure.

The results of the previous section can be viewed as partial progress in
the direction of Viana’s conjecture by proving the existence of SRB mea-
sures under the assumptions of non-zero Lyapunov exponents and additional
conditions that the system has a dominated splitting and either stable or
unstable direction is uniformly hyperbolic.4 The presence of the dominated
splitting means that one does not need to worry too much about the geom-
etry of the stable and unstable manifolds, and only needs to take care of the
expansion and contraction properties.

In general, however, the geometric properties of the system are not uni-
form. In a “fully” non-uniformly hyperbolic system the splitting Es⊕Eu is
only measurable, and the angle between the stable and unstable subbundles
is arbitrarily small. In this section we describe two general results that apply
in this setting.

The first significant results on SRB measures for non-uniformly hyperbolic
systems were those for the attractors for certain special parameters of the
Hénon family of maps obtained in [7]. These attractors have a fully nonuni-
formly hyperbolic structure which can be described relatively explicitly and,
taking advantage of several specific characteristics of this structure, an SRB
measure for the attractors was constructed first in [8] using the push-forward
argument in what is essentially a further variation of argument using the
splitting νn = ν ′n + ν ′′n described above in the case of dominated splittings,
and later in [9] using the induced map argument in a construction which
effectively became the model case study for Young’s full development of this
general approach in [48].

We describe here two recent results which develop a general framework
for the construction of SRB measures for fully general nonuniformly hyper-
bolic attractors. The first one applies in arbitrary dimension and gives the

4Although note that the ‘mostly expanding’ condition of Theorem 6.3 is slightly more
restrictive than saying that all Lyapunov exponents in Ecu are positive.
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existence of SRB measures under some slight strengthening of usual nonuni-
form hyperbolicity. The construction in this case is, once again, a further
and even more sophisticated refinement of the “push-forward” argument de-
scribed above. The second result applies only in dimension two but proves
the existence of SRB measure under no more than standard non-uniform
hyperbolicity conditions plus a natural recurrence assumption. The proof of
this result is instead based on the Young tower approach and indeed a corol-
lary of independent interest, is that in dimension two, any SRB measure can
in principle be obtained through a Young tower.

7.1. Effective hyperbolicity. We make the following standing assump-
tion.

(H) There exists a forward-invariant set A ⊂ U of positive volume with
two measurable cone families Ks(x),Ku(x) ⊂ TxM such that

(a) Df(Ku(x)) ⊂ Ku(f(x)) for all x ∈ A;

(b) Df−1(Ks(f(x))) ⊂ Ks(x) for all x ∈ f(A).
(c) Ks(x) = K(x,Es(x), as(x)) and Ku(x) = K(x,Eu(x), au(x))

are such that TxM = Es(x)⊕Eu(x); moreover ds = dimEs(x)
and du = dimEu(x) do not depend on x.

Such cone families automatically exist if f is uniformly hyperbolic on Λ.
We emphasize, however, that in our setting Ks,u are not assumed to be
continuous, but only measurable and the families of subspaces Eu,s(x) are
not assumed to be invariant.

Let A ⊂ U be a forward-invariant set satisfying (H). Define

λu(x) = inf{log ‖Df(v)‖ | v ∈ Ku(x), ‖v‖ = 1},
λs(x) = sup{log ‖Df(v)‖ | v ∈ Ks(x), ‖v‖ = 1}.

Note that if the splitting Es⊕Eu is dominated, then we have λs(x) < λu(x)
for every x. Thus we define the defect from domination at x to be

∆(x) = 1
α max(0, λs(x)− λu(x)),

where α ∈ (0, 1] is the Hölder exponent of Df . Roughly speaking, ∆(x)
controls how much the curvature of unstable manifolds can grow as we go
from x to f(x).

The following quantity is positive whenever f expands vectors in Ku(x)
and contracts vectors in Ks(x):

λ(x) = min(λu(x)−∆(x),−λs(x)).

The upper asymptotic density of Γ ⊂ N is

δ(Γ) = lim sup
N→∞

1

N
#
(
Γ ∩ [0, N)

)
.

An analogous definition gives the lower asymptotic density δ(Γ).
Denote the angle between the boundaries of Ks(x) and Ku(x) by

θ(x) = inf{](v, w) : v ∈ Ku(x), w ∈ Ks(x)}.
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We say that a point x ∈ A is effectively hyperbolic if

lim inf
n→∞

1

n

n−1∑
k=0

λ(fk(x)) > 0,(EH1)

lim
θ̄→0

δ{n | θ(fn(x)) < θ̄} = 0.(EH2)

Condition (EH1) says that not only are the Lyapunov exponents of x pos-
itive for vectors in Ku and negative for vectors in Ks, but λu gives enough
expansion to overcome the ‘defect from domination’ given by ∆.

Condition (EH2) requires that the frequency with which the angle be-
tween the stable and unstable cones drops below a specified threshold θ̄ can
be made arbitrarily small by taking the threshold to be small.

If Λ is a hyperbolic attractor for f , then every point x ∈ U is effectively
hyperbolic, since there are λ̄, θ̄ > 0 such that λs(x) ≤ −λ̄, λu(x) ≥ λ̄, and
θ(x) ≥ θ̄ for every x ∈ U , so that ∆(x) = 0 and λ(x) ≥ λ̄.

Let A satisfy (H), and let S ⊂ A be the set of effectively hyperbolic
points. Observe that effective hyperbolicity is determined in terms of a
forward asymptotic property of the orbit of x, and hence S is forward-
invariant under f . The following result is proved in [22].

Theorem 7.2. Let f be a C1+α diffeomorphism of a compact manifold M ,
and Λ a topological attractor for f . Assume that

(1) f admits measurable invariant cone families as in (H);
(2) the set S of effectively hyperbolic points satisfies m(S) > 0.

Then f has an SRB measure supported on Λ.

A similar result can be formulated given information about the set of ef-
fectively hyperbolic points on a single ‘approximately unstable’ submanifold
usually called admissible. The set of admissible manifolds that we will work
with is related to RI from Section 4, but the precise definition is not needed
for the statement of the theorem; all we need here is to have TxW ⊂ Ku(x)
for ‘enough’ points x. W ⊂ U . Let du, ds, and A be as in (H), (EH1) and
(EH2), and let W ⊂ U be an embedded submanifold of dimension du.

Theorem 7.3. Let f be a C1+α diffeomorphism of a compact manifold M ,
and Λ a topological attractor for f . Assume that

(1) f admits measurable invariant cone families as in (H);
(2) there is a du-dimensional embedded submanifold W ⊂ U such that

mW ({x ∈ S ∩W | TxW ⊂ Ku(x)}) > 0.

Then f has an SRB measure supported on Λ.

We outline the proof of this statement to illustrate the geometric approach
in the settings of non-uniformly hyperbolic attractors. We follow the same
ideas as in Section 4, but there are two major obstacles to overcome.

(1) The action of f along admissible manifolds is not necessarily uni-
formly expanding.



22 VAUGHN CLIMENHAGA, STEFANO LUZZATTO, AND YAKOV PESIN

(2) Given n ∈ N it is no longer necessarily the case that fn(W ) contains
any admissible manifolds in RI, let alone that it can be covered by
them. When fn(W ) contains some admissible manifolds, we will
need to control how much of it can be covered.

To address the first of these obstacles, we need to consider admissible man-
ifolds for which we control not only the geometry but also the dynamics;
thus we will replace the collection R′K from before with a more carefully
defined set (in particular, K will include more parameters). Since we do
not have uniformly transverse invariant subspaces Eu,s, our definition of an
admissible manifold also needs to specify which subspaces are used, and the
geometric control requires an assumption about the angle between them.

Given θ, γ, κ, r > 0, write I = (θ, γ, κ, r) and consider the following set of
“(γ, κ)-admissible manifolds of size r with transversals controlled by θ”:

(7.1) PI = {expx(graphψ) | x ∈ f(U), TxM = G⊕ F, G ⊂ Ku(x),

∠(G,F ) ≥ θ, ψ ∈ C1+α(BG(r), F ) satisfies (4.1)}.

Elements of PI are admissible manifolds with controlled geometry. We also
impose a condition on the dynamics of these manifolds. Fixing C, λ > 0,
write J = (C, λ) and consider for each N ∈ N the collection of sets

(7.2) QJ,N = {fN (V0) | V0 ⊂ U, and for every y, z ∈ V0, we have

d(f j(y), f j(z)) ≤ Ce−λ(N−j)d(fN (y), fN (z)) for all 0 ≤ j ≤ N}.

Elements of PI∩QJ,N are admissible manifolds with controlled geometry and
dynamics in the unstable direction. We also need a parameter β > 0 that
controls the dynamics in the stable direction, and another parameter L > 0
that controls densities in standard pairs. Then writing K = I ∪ J ∪ {β, L},
we obtain a set RK,N ⊂ PI ∩ QJ,N for which we have the added restriction
that we control the dynamics in the stable direction; the corresponding set
of standard pairs is written R′K,N .

The set R′K,N carries a natural product topology in which R′K,N is com-

pact and the map Φ defined in (4.2) is continuous.
As before, let M≤1(R′K,N ) denote the space of measures on R′K,N with

total weight at most 1. The resulting space of measures on U plays a central
role:

(7.3) MK,N = Φ(M≤1(R′K,N )).

Measures inMK,N have uniformly controlled geometry, dynamics, and den-
sities via the parameters in K, and MK,N is compact. However, at this
point we encounter the second obstacle mentioned above: because f(W )
may not be covered by admissible manifolds in RK,N , the set MK,N is not
f∗-invariant.

To address this, one must establish good recurrence properties to MK,N

under the action of f∗ onM(U); this can be done via effective hyperbolicity.
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Consider for x ∈ A and λ > 0 the set of effective hyperbolic times

(7.4) Γe
λ
(x) =

{
n |

n−1∑
j=k

(λu −∆)(f j(x)) ≥ λ(n− k) for all 0 ≤ k < n

}
.

Results from [21] show that for every x and almost every effective hyperbolic
time n ∈ Γe

λ
(x), there is a neighborhood W x

n ⊂ W containing x such that

fn(W x
n ) ∈ PI∩QJ,N . With a little more work, one can produce a “uniformly

large” set of points x and times n such that fn(W x
n ) ∈ RK,N , and in fact

fn∗mWx
n
∈ MK,N . Then this can be used to obtain measures νn ∈ MK,N

such that

(7.5) νn ≤ µn = 1
n

∑n−1
k=0 f

k
∗mW and limn→∞ ‖νn‖ > 0.

Once this is achieved, compactness ofMK,N guarantees existence of a non-
trivial ν ∈

⋂
NMK,N such that ν ≤ µ = limk µnk

. In order to apply the
absolute continuity properties of ν to the measure µ, one must define a
collection Mac of measures with good absolute continuity properties along
admissible manifolds, for which there is a version of the Lebesgue decompo-
sition theorem that gives µ = µ(1)+µ(2), where µ(1) ∈Mac is invariant. This
measure is non-trivial since 0 6= ν ≤ µ(1), and the definition of R′K,N guar-
antees that the set of points with non-zero Lyapunov exponents has positive
measure with respect to ν, and hence also with respect to µ(1). Thus some
ergodic component of µ(1) is hyperbolic, and hence is an SRB measure.

7.2. Maps on the boundary of Axiom A: neutral fixed points. We
give a specific example of a map for which the conditions of Theorem 7.3
can be verified. Let f : U →M be a C1+α Axiom A diffeomorphism onto its
image with f(U) ⊂ U , where α ∈ (0, 1). Suppose that f has one-dimensional
unstable bundle.

Let p be a fixed point for f . We perturb f to obtain a new map g that has
an indifferent fixed point at p. The case when M is two-dimensional and f
is volume-preserving was studied by Katok. We allow manifolds of arbitrary
dimensions and (potentially) dissipative maps. For example, one can choose
f to be the Smale–Williams solenoid or its sufficiently small perturbation.

We describe a specific perturbation of f for which the conditions of the
main theorem can be verified; one can also describe a general set of condi-
tions on the return map through the region of the perturbation [22, Theorem
2.3]. We suppose that there exists a neighborhood Z 3 p with local coordi-
nates in which f is the time-1 map of the flow generated by

ẋ = Ax

for some A ∈ GL(d,R). Assume that the local coordinates identify the
splitting Eu ⊕ Es with R ⊕ Rd−1, so that A = Au ⊕ As, where Au = γIdu
and As = −βIds for some γ, β > 0. In the Katok example we have d = 2
and γ = β since the map is area-preserving.
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Now we use local coordinates on Z and identify p with 0. Fix 0 < r0 < r1

such that B(0, r1) ⊂ Z, and let ψ : Z → [0, 1] be a C1+α function such that

(1) ψ(x) = ‖x‖α for ‖x‖ ≤ r0;
(2) ψ(x) = 1 for ‖x‖ ≥ r1;
(3) ψ(x) > 0 for x 6= 0 and ψ′(x) > 0.

Let X : Z → Rd be the vector field given by X (x) = ψ(x)Ax. Let g : U →M
be given by the time-1 map of this vector field on Z and by f on U \ Z.
Note that g is C1+α because X is C1+α. In [22] it is shown that g satisfies
the conditions of Theorem 7.3 (in fact, a slightly more general version of
this theorem), which proves the following.

Theorem 7.4. The map g has an SRB measure.

Note that g does not have a dominated splitting because of the indifferent
fixed point. We also observe that if ψ is taken to be C∞ away from 0, then
g is also C∞ away from the point p.

7.3. Two-dimensional non-uniformly hyperbolic attractors. Let f
be a C1+α diffeomorphism of a compact surface which is non-uniformly
hyperbolic on an invariant set Λ.5 Let Λ` be a regular set.

Definition 7.5. A subset R ⊂ Λ is a rectangle if R ⊆ Λ` for some ` and
for every x, y ∈ R, [x, y] := V s(x) ∩ V u(y) consists of a single point and
[x, y] ∈ R.

In other words the set R has hyperbolic product structure. Notice that a
single point x ∈ Λ can be considered a (trivial) rectangle, but we in general
we will always assume that our rectangle consists of an uncountable set of
points, in which case R contains lots of subrectangles. Indeed for any two
distinct points p, q ∈ R, their stable and unstable curves bound an open

domain R̂p,q ⊂M and the intersection of R with the closure of R̂p,q is also
a rectangle, which we denote by Rp,q.
Definition 7.6. A rectangle R is

(1) nice if R = Rp,q for some periodic points p, q;
(2) fat if there exists some x ∈ R with mV u(x)(R∩ V u(x)) > 0;
(3) recurrent if every x ∈ R returns to R in the future and in the past.

We remark that the existence of rectangles with the nice property is easily
satisfied in two dimensions for any hyperbolic set Λ as above. The other
two conditions are elementary and natural conditions which are easily seen
to be necessary for the existence of an SRB measure. It is proved in [23]
that in fact these are also sufficient conditions.

Theorem 7.7 ([23]). The map f has an SRB measure if and only if it
admits a nice fat recurrent rectangle.

5We stress that non-uniform hyperbolicity on an invariant set does not require presence
of any invariant measure. On the other hand if f preserves a hyperbolic measure then
there is an invariant set Λ on which f is non-uniformly hyperbolic.
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As mentioned above, the proof of this result relies on the construction of
a Young tower, which is in itself a result of independent interest. Indeed,
the technical core of the proof of Theorem 7.7 is a result which gives some
extremely simple and natural conditions for the existence of a Young tower
in the two dimensional case. To formulate this result we give here the
definition of the topological structure of a Young tower, which is the most
difficult part of the construction and refer the reader to [23] or the original
paper of Young [48] for the full definition which includes some hyperbolicity
and distortion conditions.

Definition 7.8. Let Γ be a rectangle.

(1) Γs ⊂ Γ is an s-subset of Γ if x ∈ Γs implies V s(x) ∩ Γ ⊂ Γs;
(2) Γu ⊂ Γ is a u-subset of Γ if x ∈ Γu implies V u(x) ∩ Γ ⊂ Γu.

Let τ : Γ→ N be the first return time function of points of Γ to Γ (which
is defined at all points of Γ if Γ is recurrent) and let Nτ denote the set of
times which occur as first return times of points in Γ. Let Γ be a recurrent
rectangle.

Definition 7.9. Γ supports a Topological First Return Young Tower if

ΓSi := {x ∈ Γ : τ(x) = i} and ΓUi := f i(ΓSi )

are s-subsets and u-subsets respectively of Γ for every i ∈ Nτ .

Theorem 7.10 ([23]). Let Γ0 be a nice recurrent rectangle. Then there
exists a nice recurrent rectangle Γ ⊃ Γ0 which supports a Topological First
Return Young Tower.

The property that Γ ⊃ Γ0 implies that if Γ0 is a fat rectangle then the
same holds for Γ and thus an immediate consequence of Theorem 7.10 is that
if Γ0 is a nice fat recurrent rectangle then there exists another, also nice fat
recurrent, rectangle which supports a First return Topological Young Tower.
It is then possible to prove that the required hyperbolicity and distortion
estimates are satisfied which imply the existence of an SRB measure by [48],
thus obtaining Theorem 7.7.

8. SRB measures for hyperbolic attractors with singularities

8.1. Topological attractors with singularities. Let M be a smooth
compact manifold, U ⊂ M an open bounded connected subset, the trap-
ping region, N ⊂ U a closed subset and f : U \N → U a C2 diffeomorphism
such that

(8.1)
‖d2fx‖ ≤ C1d(x,S+)−α1 for any x ∈ U \N,
‖d2f−1

x ‖ ≤ C2d(x,S−)−α2 for any x ∈ f(U \N),

where S+ = N ∪ ∂U is the singularity set for f and S− = f(S+) that is

S− = {y ∈ U : there is z ∈ S+ and zn ∈ U\S+ such that zn → z, f(zn)→ f(z)}
is the singularity set for f−1. We will assume that m(S+) = m(S−) = 0.
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Define

U+ = {x ∈ U : fn(x) /∈ S+, n = 1, 2, . . . }

and the topological attractor with singularities

D =
⋂
n≥0

fn(U+), Λ = D̄.

Given ε > 0 and ` > 1, set

D+
ε,` = {z ∈ Λ : d(fn(z),S+) ≥ `−1e−εn, n = 0, 1, 2, . . . },

D−ε,` = {z ∈ Λ : d(fn(z), N−) ≥ `−1e−εn, n = 0, 1, 2, . . . },

D0
ε,` = D+

ε,`

⋂
D−ε,`,

D0
ε =

⋃
`≥1

D0
ε,`.

The set D0
ε is the core of the attractor and it may be an empty set as it may

be the set D.

Theorem 8.1 ([37]). Assume that there are C > 0 and q > 0 such that for
any ε > 0 and n > 0

(8.2) m(f−n(U(ε,S+) ∩ fn(U+))) ≤ Cεq,

where U(ε,S+) is a neighborhood of the (closed) set S+. Then there is an
invariant measure µ on Λ such that, µ(D0

ε) > 0, in particular, the core is
not empty.

8.2. Hyperbolic attractors with singularities. We say that a topolog-
ical attractor with singularities Λ is hyperbolic, if there exist two families of
stable and unstable cones

Ks(x) = K(x,E1(x), θ(x)), Ku(x) = K(x,E2(x), θ(x)), x ∈ U \ S+

such that

(1) the angle ∠(E1(x), E2(x)) ≥ const. ;
(2) df(Ks(x)) ⊂ Ks(f(x)) for any x ∈ U \ S+ and df−1(Ku(x)) ⊂

Ku(f(x)) for any x ∈ f(U \ S+);
(3) for some λ > 1

(a) ‖dfxv‖ ≥ λ‖v‖ for x ∈ U \ S+ and v ∈ Ku(x);
(b) ‖df−1

x v‖ ≥ λ‖v‖ for x ∈ f(U \ S+) and v ∈ Ks(x).

Theorem 8.2 ([37]). Let Λ be a hyperbolic attractor with singularities for a
C1+α map and assume that Condition (8.2) holds. Then f admits an SRB
measure on Λ.
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8.3. Examples. We describe the following three examples of hyperbolic
attractors with singularities which satisfy requirements (8.1) and (8.2) and
thus possess SRB measures.

The Lorenz attractor. Let I = (−1, 1), U = I × I, N = I × 0 ⊂ U and
f : U \N → U is given by

f(x, y) = ((−B|y|ν0 +Bsign(y)|y|ν + 1)sign(y), ((1 +A)|y|ν0 −A)sign(y)),

where

0 < A < 1, 0 < B <
1

2
, ν > 1,

1

1 +A
< ν0 < 1.

This attractor appears in the Lorenz system of ODE :

ẋ = −σx+ σy, ẏ = rx− y − xz, ż = xy − bz
for the values of the parameters σ = 10, b = 8

3 and r ∼ 24.05, see [1, 2, 11,
26, 50].

The Lozi attractor. Let I = (−c, c) for some 0 < c < 1 and let
U = I × I, N = 0× I ⊂ U and f : U \N → U is given by

f(x, y) = (1 + by − a|x|, x),

where 0 < a < a0 and 0 < b < b0 for some small a0 > 0 and b0 > 0.
Up to a change of coordinates this map was introduced by Lozi as a simple

version of the famous Hénon map in population dynamics, see [33, 35, 42, 49].
The Belykh attractor. Let I = (−1, 1), U = I × I, N = {(x, y) : y =

kx} ⊂ U and f : U \N → U is given by

f(x, y) =

{
(λ1(x− 1) + 1, λ2(y − 1) + 1) for y > kx,

(µ1(x+ 1)− 1, µ2(y + 1)− 1) for y < kx,

where

0 < λ1, µ1 <
1

2
, 1 < λ2, µ2 <

2

1− |k|
, |k| < 1.

In the case λ1 = µ1 and λ2 = µ2 this map was introduced by Belykh
[6] as one of the simplest models in the phase synchronization theory in
radiophysics.
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