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Abstract We consider coupled map lattices of hyperbolic type, i.e., chains of weakly
interacting hyperbolic sets (attractors) over multi-dimensional lattices. We describe
the thermodynamic formalism of the underlying spin lattice system and then prove
existence, uniqueness, mixing properties, and exponential decay of correlations of
equilibrium measures for a class of Hölder continuous potential functions with a suf-
ficiently small Hölder constant. We also study finite-dimensional approximations of
equilibrium measures in terms of lattice systems (Z-approximations) and lattice spin
systems (Zd-approximations). We apply our results to establish existence, uniqueness,
and mixing property of SRB-measures as well as obtain the entropy formula.

Introduction

Coupled map lattices form a special class of infinite-dimensional dynamical systems.
They were introduced by K. Kaneko [Ka] in 1983 as simple models with essential features
of spatio-temporal chaos. These systems are built as weak interactions of identical local
finite-dimensional subsystems at lattice points. Such systems are proven to be useful in
studying qualitative properties of spatially extended dynamical systems. They can easily
be simulated on a computer, and many remarkable results about coupled map lattices were
obtained by researchers working in different areas of physics, biology, mathematics, and
engineering.

Bunimovich and Sinai initiated the rigorous mathematical study of coupled map lat-
tices in [BuSi]. They constructed special Sinai-Bowen-Ruelle (SRB)-measures for weakly
coupled expanding circle maps (under some additional assumptions that the interaction is
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of finite range and preserves the unique fixed point of the map). SRB-measures are invari-
ant under both space and time translations and have strong ergodic properties including
mixing, positive entropy, and exponential decay of correlations. ¿From the physical point
of view this is interpreted as evidence of spatio-temporal chaos. In [BK1]–[BK3], Bricmont
and Kupiainen extended the results of Bunimovich and Sinai to general expanding circle
maps. In [KK], Keller and Künzle studied the case when the local subsystems are piecewise
smooth interval maps. A detailed survey can be found in [Bu].

The first attempt to analyze coupled map lattices with multidimensional local subsys-
tems of hyperbolic type was made by Pesin and Sinai in [PS]. They constructed conditional
distributions for the SRB-measure on unstable local manifolds assuming that the local sub-
system possesses a hyperbolic attractor. In [J1], [J2], Jiang considered the case when a
local subsystem possesses a hyperbolic set and obtained some partial results on the ex-
istence and uniqueness of Gibbs distributions. In this paper we extend these results and
establish the existence and uniqueness of Gibbs distributions for arbitrary chain of weakly
interacting hyperbolic sets.

Our main tool of study is the thermodynamic formalism which is applied to the lattice
spin system of statistical mechanics associated with a given coupled map lattice. We point
out that the lattice spin systems corresponding to coupled map lattices are of a special type
and have not been studied in the framework of the “classical” statistical mechanics until
recently. The study of Gibbs distributions for these special lattice spin systems required
new and advanced technique which was developed in [JM] and [BK2, BK3].

In [JM], the authors considered two-dimensional lattice spin systems. Using polymer
expansions of partition functions they found an explicit formula for Gibbs states in terms
of the potentials and thus proved existence and uniqueness of Gibbs states for a special
class of potentials obtained from the corresponding coupled map lattices (which are gen-
erated by Hölder continuous functions with sufficiently small Hölder constant). They also
established continuity of Gibbs states over such potentials. In [BK2, BK3], the authors
considered general multidimensional lattice spin systems. Using expansions of the corre-
lation functions they also established existence and uniqueness of the Gibbs states as well
as the mixing property for the same type of potentials. In this paper we include a detailed
discussion of lattice spin systems and their relation to coupled map lattices. The appendix
contains a concise description of polymer expansions. This makes the paper relatively
self-contained and thus more accessible for specialists in dynamical systems who are not
very familiar with this highly specialized area of statistical physics.

The paper is divided into five sections. In the first three sections we generalize results
of [J1] on the topological structure of coupled map lattices of hyperbolic type. Our main
result is that these systems are structurally stable (Theorem 1.1). This result allows us to
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obtain a complete description of topological properties of coupled map lattices of hyperbolic
type as well as construct their symbolic representations.

When the interaction is short ranged and thus the coupling is exponentially weak, the
conjugacy map allows one to use Markov partitions for the uncoupled map lattice to build
Markov partitions for the coupled map lattice. This leads to a symbolic representation of
the lattice system as a lattice spin system of statistical mechanics. In [JM] (see also [BK3])
the authors established uniqueness of Gibbs states and exponential decay of correlations
for these lattice spin systems. We use their results (as well as results in [BK3]) to establish
uniqueness and the exponential mixing property of equilibrium measures. Our main result
is Theorem 3.6.

In Section 4 we construct “natural” finite-dimensional approximations of equilib-
rium measures. There are two different types of approximations. One results from Z-
approximations by finite volumes in the lattice while the other is obtained from Zd+1-
approximations by finite volumes in the lattice spin systems. Our main results are stated
in Theorems 4.2 and 4.3.

In Section 5 we apply our results to establish the existence, uniqueness, and mixing
property of SRB-measures for chains of weakly interacting hyperbolic attractors. We show
that these measures are Gibbs states for Hölder continuous functions and we describe
them in terms of their finite-dimensional approximations using lattice spin systems (see
Theorem 5.1). One direct consequence of our construction of SRB-measures is a formula for
the Zd+1-measure theoretic entropy (see Remark (5) in Section 5; see [J3] for the detailed
proof). This generalizes the well-known formula for the entropy of SRB-measures in the
finite-dimensional case.
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Science Foundation grant DMS9403723. M. J. was also partially supported by the grants
from Army Research Office and the National Institute of Standards and Technology. Ya.
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ETH (Zurich, Switzerland) for hospitality and providing excellent conditions to work on
the paper. The authors also thank IMA (Minneapolis) for providing a great opportunity
to get together and complete the paper.

I. Coupled Map Lattices

1.1. Definition of Coupled Map Lattices.
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Let M be a smooth compact Riemannian manifold and f a Cr-map of M , r ≥ 1.
Let also Zd, d ≥ 1 be the d-dimensional integer lattice. Set M = ⊗i∈ZdMi, where Mi

are copies of M . The space M admits the structure of an infinite-dimensional Banach
manifold with the Finsler metric induced by the Riemannian metric on M , i.e.,

‖v̄‖ = sup
i∈Zd
‖vi‖. (1.1)

The distance in M induced by the Finsler metric is given as follows

ρ(x̄, ȳ) = sup
i∈Zd

d(xi, yi), (1.2)

where x̄ = (xi) and ȳ = (yi) are two points inM and d is the Riemannian distance on M .
We define the direct product map on M by F = ⊗i∈Zdfi, where fi are copies of f .
Consider a map G on M which is Cr-close to the identity map id. Set Φ = F ◦ G.

The map G is said to be an interaction between points (space sites) of the lattice Zd and
the map Φ is said to be a perturbation of F . Iterates of the map Φ generate a Z-action on
M called time translations.

We also consider the group action of the lattice Zd on M by spatial translations Sk.
Namely, for any k ∈ Zd and any x̄ = (xi) ∈M, we set

(
Sk(x̄)

)
i

= xi+k.
The pair of actions (Φ, S) on M is called a coupled map lattice generated by the

local map f and the interaction G. If G commutes with the spatial translations Sk, i.e.,
Sk ◦ G = G ◦ Sk, we call G spatial translation invariant. In this case the pair (Φ, S)
generates a Zd+1-action on M. If G = id, the lattice is called uncoupled.

One can also define the perturbation in the form Φ = G ◦ F . If F is invertible (and
in what follows we will always assume this) the study of perturbations of such a form is
equivalent to the study of perturbations in the previous form since G◦F = F ◦(F−1◦G◦F )
with F−1 ◦G ◦ F being close to the identity.

1.2. Coupled Map Lattices of Hyperbolic Type.

We consider a special type of coupled map lattice assuming that the local map is
hyperbolic. More precisely, let U ⊂ M be an open set, f : U → M a C1-diffeomorphism,
and Λ ⊂ U a closed invariant hyperbolic set for f . The latter means that the tangent
bundle TΛM over Λ is split into two subbundles: TΛM = Es

⊕
Eu , where Es and Eu

are stable and unstable subspaces. They are both invariant under the differential Df , and
for some C > 0 and 0 < λ < 1,

‖Dfnv‖ ≤ Cλn‖v‖ for n ≥ 0, v ∈ Es; (1.3)

‖Df−nw‖ ≤ Cλn‖w‖ for n ≥ 0, w ∈ Eu.
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The hyperbolic set Λ is called locally maximal if there exists an open set U ⊃ Λ such that
Λ =

⋂
n∈Z f

n(Ū), where Ū is the closure of U .
For any point x in a hyperbolic set Λ one can construct local stable and unstable

manifolds defined by

V s(x) = {y ∈M : d(x, y) ≤ ε, d(fn(x), fn(y))→ 0, n→ +∞};

V u(x) = {y ∈M : d(x, y) ≤ ε, d(fn(x), fn(y))→ 0, n→ −∞}. (1.4)

It is known that these submanifolds are as smooth as the map f .
The definition of hyperbolicity can easily be extended to diffeomorphisms of Banach

manifolds. Suppose that H is a C1-diffeomorphism of an open set U of a Banach manifold
N (endowed with a Finsler metric) and a set ∆ ⊂ U is invariant under H (note that ∆
may not be compact). We say that ∆ is hyperbolic if the tangent bundle T∆N over ∆
admits a splitting T∆N = Es ⊕Eu with the following properties:

1) Es and Eu are invariant under the differential DH;
2) for any continuous sections v valued in Es and w valued in Eu we have

‖DHnv‖ ≤ Cλn‖v‖ and ‖DH−nw‖ ≤ Cλn‖w‖,

for some constants C > 0 and 0 < λ < 1 independent of v and w;
3) there exists b > 0 such that for any z the angle between Es(z) and Eu(z) is bounded

away from zero, i.e.,

inf{‖ξ − η‖ : ξ ∈ Es(z), η ∈ Eu(z)‖, ‖ξ‖ = ‖η‖ = 1} ≥ b. (1.5)

Note that in the finite-dimensional case the last condition holds true automatically.
It is easy to see that the map F is hyperbolic in the above sense, i.e., it possesses an

infinite-dimensional hyperbolic set

∆F = ⊗i∈ZdΛi,

where Λi is a copy of Λ. Moreover, for each point x̄ = (xi) ∈ ∆F the tangent space Tx̄M
admits the splitting Tx̄M = Es(x̄)⊕ Eu(x̄), where the stable and unstable subspaces are

Es(x̄) = ⊗i∈ZdE
s(xi), Eu(x̄) = ⊗i∈ZdE

u(xi). (1.6)

Furthermore, for each point x̄ = (xi) ∈ ∆F the local stable and unstable manifolds passing
through x̄ are

V sF (x̄) = ⊗i∈ZdV
s
i (xi), V uF (x̄) = ⊗i∈ZdV

u
i (xi) (1.7)
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where V si (xi) and V ui (xi) are the local stable and unstable manifolds at xi respectively. If
the hyperbolic set Λ is locally maximal, so is ∆F .

1.3. Short Range Maps.

The goal of this paper is to investigate metric properties of coupled map lattices of
hyperbolic type. In the finite-dimensional case one uses thermodynamic formalism (see
[Bo], [Ru]) to construct invariant measures and then studies the ergodicity of hyperbolic
maps with respect to these measures. The extension of this formalism to the infinite-
dimensional case faces some obstacles. The most crucial obstacle is non-compactness of
the hyperbolic set ∆F . One of the ways to overcome this obstacle is to introduce a new
metric on M with respect to which the space becomes compact. This metric is known as
a metric with weights and is defined as follows: given 0 < q < 1 and x̄, ȳ ∈M, we set

ρq(x̄, ȳ) = sup
i∈Zd

q|i|d(xi, yi) (1.8)

where |i| = |i1|+ |i2|+ · · ·+ |id|, i = (i1, i2, · · · , id) ∈ Zd.
For different 0 < q < 1 the metrics ρq induce the same compact (Tychonov) topology

in M.
Although working with ρq-metrics gives us some advantages in studying invariant

measures for the maps F and Φ, it also introduces some new problems. For example, the
set M is no longer a differential manifold and the maps F and Φ, while being continuous,
need not be differentiable. In particular, the set ∆F being compact is no longer hyperbolic
in the above sense but only in some weak sense. More precisely, this set is topologically
hyperbolic, i.e., for every point in ∆F the local stable and unstable manifolds (1.7) are, in
general, only continuous (not smooth).

We will restrict to the class of perturbations to be able to keep track of the hyperbolic
behavior of trajectories for the perturbation map Φ. More precisely, we consider the
special class of perturbations called short range maps. The concept of short range maps
was introduced by Bunimovich and Sinai in [BuSi] and was further developed by Pesin and
Sinai in [PS] (see also [KK]). We follow their approach.

Let Y be a subset of M and G : Y →M a map. We say that G is short ranged if G
is of the form G = (Gi)i∈Zd , where Gi : Y → Mi satisfy the following condition: for any
fixed k ∈ Zd and any points x̄ = (xj), ȳ = (yj) ∈ Y with xj = yj for all j ∈ Zd, j 6= k we
have

d(Gi(x̄), Gi(ȳ)) ≤ Cθ|i−k|d(xk, yk) (1.9)

where C and θ are constants and C < 0, 0 < θ < 1. We call θ the decay constant of G.
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If G is spatial translation invariant then G can be shown to be short ranged with a
decay constant θ, if and only if

d(G0(x̄), G0(ȳ)) ≤ Cθ|k|d(xk, yk), (1.10)

for any x̄ = (xj), ȳ = (yi) ∈ Y with xj = yj for all j ∈ Z, j 6= k.
In the following Propositions 1.1–1.3 we collect some basic properties of short range

maps. The proofs can be found in [J1].

Proposition 1.1. Let G be a C1-diffeomorphism of an open set U ⊂ M onto its

image. Assume that G is short ranged with a decay constant θ. Then

(1) the differential of G at every point x̄, Dx̄G : Tx̄M→ Tx̄M, is a short range linear

map with the same decay constant θ;

(2) the bundle map DG is short ranged with the same decay constant θ.

Moreover, if the map G is continuous with respect to a ρq-metric then either of state-

ments (1) or (2) implies that G is short ranged.

Proposition 1.2. For any 0 < θ < 1, there exists ε > 0 such that if G :M→M is

a short range C1+α-diffeomorphism with the decay constant θ and distC1(G, id) < ε then

G−1 is also a short range map.

Short range maps are well adopted with the metric structure of M generated by
ρq-metrics as the following result shows.

Proposition 1.3. (1) Let G :M→M be a short range map with a decay constant

θ. Then G is Lipschitz continuous as a map from (M, ρq) into itself for any q > θ.

(2) If G is a Lipschitz continuous map from (M, ρq) to (M, ρq1), with some 0 < q1 < 1,

then G is short ranged with the decay constant θ = q.

(3) For any ε > 0 and 0 < θ < q < 1, there exist δ > 0 such that if G is a C1+α-spatial

translation invariant short range map ofM with the decay constant θ and distC1(G, id) ≤
δ, then G is Lipschitz continuous in the ρq-metric with a Lipschitz constant L ≤ 1 + ε.

1.4. Structural Stability.

We consider the problem of structural stability of coupled map lattices of hyperbolic
type (M, F ). It is well-known that finite-dimensional hyperbolic dynamical systems are
structurally stable (see for example, [KH], [Sh]) and so are hyperbolic maps of Banach
manifolds which admit a partition of unity (see [Lang]). We stress that the Banach manifold
M = ⊗i∈ZdMi does not admit a partition of unity and this result cannot be applied
directly. In order to study structural stability we will exploit the special structure of
the system (M, F ) as the direct product of countably many copies of the same finite-
dimensional dynamical system (M, f). This enables us to establish structural stability by
modifying arguments from the proof in the finite-dimensional case.
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From now on we always assume that the interaction G is short ranged.

Theorem 1.1. (1) For any ε > 0 there exists 0 < δ < δ0 such that, if distC1(Φ, F ) ≤ δ,
then there is a unique homeomorphism h : ∆F → M satisfying Φ ◦ h = h ◦ F |∆F

with

distC0(h, id) ≤ ε. In particular, the set ∆Φ = h(∆F ) is hyperbolic and locally maximal.

(2) For any 0 < θ < 1 there exists δ > 0 such that if G is a C2-spatial translation

invariant short range map with a decay constant θ and distC1(G, id) ≤ δ, then the conju-

gacy map h is Hölder continuous with respect to the metric ρq, 0 < q < 1. Moreover,

h = (hi(x̄))i∈Zd satisfies the following property:

d(h0(x̄), h0(ȳ)) ≤ C(δ)dα(xk, yk) (1.11)

for every k 6= 0 and any x̄, ȳ ∈ M with xi = yi, i ∈ Zd, i 6= k, where 0 < α < 1 and

C(δ) > 0 is a constant. Furthermore, C(δ)→ 0 as distC1(G, id)→ 0.

Proof. We describe the main steps of the proof of Statement 1 recalling those argu-
ments that will be used below (detailed arguments can be found in [J1]). Let U(∆F ) be
an open neighborhood of ∆F and C0(∆F , U(∆F )) the space of all continuous maps from
∆F to U(∆F ). Consider the map

G : C0(∆F , U(∆F ))→ C0(∆F ,M) (1.12)

defined by β 7−→ Φ ◦ β ◦ F−1. We wish to show that G has a unique fixed point near the
identity map. Let Γ0(∆F , TM) be the space of all continuous vector fields on ∆F . We
denote by I the identity embedding of ∆F into M, by Bγ(I) the ball in C0(∆F , U(∆F ))
centered at I of radius γ, and by A : Bγ(I) → Γ0(∆F , TM) the map that is defined as
follows:

Aβ(ȳ) = (exp−1
yi
βi(ȳ))i∈Z. (1.13)

When γ is small A is a homeomorphism onto the ball Dγ(0) in Γ0(∆F , TM) centered at
the zero section 0 of radius γ. Set

G′ = A ◦ G ◦ A−1 : Dγ(0)→ Γ0(∆F , TM). (1.14)

If a section v ∈ Dγ(0) is a fixed point of G′, then A◦G ◦A−1v = v, and hence the preimage
of v, A−1v ∈ Bγ(I), is a fixed point of G.

To show that G′ has a fixed point in Dγ(0) we want to prove that the following
equation has a unique solution v in Dγ(0):

−((DG′)|0 − Id)−1(G′v − (DG′)|0v) = v. (1.15)

Note that Γ0(∆F , TM) is a Banach space and the map G′ is differentiable in Dγ(0). In
fact, DG′ is Lipschitz in v since the exponential map and its inverse are both smooth.
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Since the map G is short ranged, so are the maps G′ and (DG′)|0. Therefore, we can use
weak∗ bases to represent (DG′) in a matrix form. This enables one to readily reproduce
the arguments in [KH] (see Lemma 18.1.4) and, exploiting hyperbolicity of F , to show
that:

1) the operator −((DG′)|0 − Id)−1 is bounded;
2) the map K : Dγ(0)→ Γ0(∆F , TM) defined by

Kv = −((DG′)|0 − Id)−1(G′v − (DG′)|0v) (1.16)

is contracting in a smaller ball Dγ0(0) ⊂ Dγ(0) ⊂ Γ0(∆F , TM);
3) K(Dγ0(0)) ⊂ Dγ0(0).
Thus, K has a unique fixed point in Dγ0(0).
We now proceed with Statement 2 of the theorem. In order to establish (1.11) we

need to show that the section v has such a property. Let w be a section satisfying (1.11).
Since the map K is short ranged and sufficiently closed to an uncoupled contracting map,
it is straightforward to verify that the section Kw also satisfies (1.11).

Since the map G is spatial translation invariant, so is h. The Hölder continuity of
h was proved in [J1] by showing that stable and unstable manifolds for Φ vary Hölder
continuously in the ρq-metric. In Section 5, we describe finite-dimensional approximations
for h which can be also used to establish an alternative proof of the Hölder continuity. �

The hyperbolicity of the map Φ|∆Φ enables one to establish the following topological
properties of this map:

1) the manifolds V sΦ(h(x̄)) = h(V sF (x̄)) and V uΦ (h(x̄)) = h(V uF (x̄)) are local stable
and unstable manifolds for Φ. They are infinite-dimensional submanifolds of M and are
transversal in the sense that the distance between their tangent bundles is bounded away
from 0.

2) stable and unstable manifolds for Φ constitute a local product structure of the set
∆Φ. This means that there exists a constant δ such that for any x̄, ȳ ∈ ∆Φ with ρ(x̄, ȳ) < δ,
the intersection V sΦ(x̄) ∩ V uΦ (ȳ) consists of a single point which belongs to ∆Φ.

Furthermore, in [J1] the author proved the following result.

Theorem 1.2. If the map f |Λ is topologically mixing then so is the map Φ|∆Φ .

Although the space M equipped with the ρq-metric is not a Banach manifold and
the maps F and Φ are not differentiable, Theorem 1.1 allows one to keep track of the
hyperbolic properties of these maps. More precisely, the following statements hold:

1) The local stable and unstable manifolds are Lipschitz continuous with respect to
the ρq-metric. The map Φ is uniformly contracting on stable manifolds and the map Φ−1 is
uniformly contracting on unstable manifolds. The contracting coefficients can be estimated
from above by (1 + ε)λ with ε arbitrary small.
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2) The local stable and unstable manifolds are transversal in the ρq-metric in the
following sense: for any points x̄, ȳ ∈ V sΦ(x̄), and z̄ ∈ V uΦ (x̄),

ρq(x̄, ȳ) + ρq(x̄, z̄) ≤ Cρq(ȳ, z̄), (1.17)

where C is a constant depending only on the size of local stable and unstable manifolds
and the number q.

The first property was originally proved in [PS] based upon the graph transform
technique. The second property was established in [J2]. These properties allows one to
say that the map Φ is “topologically hyperbolic”.

II. Existence of Equilibrium Measures

Let Ω be a compact metric space and τ a Zd+1-action on Ω induced by d+1 commuting
homeomorphisms, d ≥ 0. Let also U = {Ui} be a cover of Ω. For a finite set X ⊂ Zd+1

define
UX = ∨x∈Xτ−xU . (2.1)

Denote by |X | the cardinality of the set X .
The action τ is said to be expansive if there exists ε > 0 such that for any ξ, η ∈ Ω,

d(τxξ, τxη) ≤ ε for all x ∈ Zd+1 implies ξ = η.

A Borel measure µ on Ω is said to be τ -invariant if µ is invariant under all d + 1 homeo-
morphisms. We denote the set of all τ -invariant measures on Ω by I(Ω).

Let µ ∈ I(Ω) and U = {Ui} be a finite Borel partition of Ω. Define

H(µ,U) = −
∑
i

µ(Ui) logµ(Ui) (2.2)

and then set

hτ (µ,U) = lim
a1,...,ad+1→∞

1
|X(a)|H(µ,UX(a)) = inf

a

1
|X(a)|H(µ,UX(a)), (2.3)

where X(a) = {(i1 . . . id+1) ∈ Zd+1 : a = (a1 . . . ad+1), ak > 0, |ik| ≤ ak, k = 1, . . . , d+1}.
The (measure-theoretic) entropy of µ is defined to be

hτ (µ) = sup
U
hτ (µ,U) = lim

diamU→0
hτ (µ,U), (2.4)

where diamU = maxi(diamUi).
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Let U be a finite open cover of Ω, ϕ a continuous function on Ω, and X a finite subset
of Zd+1. Define

ZX(ϕ,U) = min
{Bj}

{∑
j

exp
[

inf
ξ∈Bj

∑
x∈X

ϕ(τxξ)
]}
, (2.5)

where the minimum is taken over all subcovers {Bj} of UX . Set

Pτ (ϕ,U) = lim sup
a1,...,ad+1→∞

1
|X(a)| logZX(a)(ϕ,U). (2.6)

The quantity
Pτ (ϕ) = lim

diamU→0
Pτ (ϕ,U) = sup

U
Pτ (ϕ,U) (2.7)

is called the topological pressure of ϕ (one can show that the limit in (2.7) exists).
For any continuous function ϕ and any ν ∈ I(Ω) the variational principle of statistical

mechanics claims that
Pτ (ϕ) = sup

ν∈I(Ω)

(
hτ (ν) +

∫
ϕdν

)
. (2.8)

A measure µ ∈ I(Ω) is called an equilibrium measure for ϕ with respect to a Zd+1-action
τ if

Pτ (ϕ) = hτ (µ) +
∫
ϕdµ. (2.9)

In [Ru], Ruelle shows that expansiveness of a Zd+1-action implies the upper semi-continuity
of the metric entropy hτ (µ) with respect to µ. Therefore, it also implies the existence of
equilibrium measures for continuous functions. For uncoupled map lattices one can easily
check that the action (F, S) is expansive on ∆F in the ρq-metric. The expansiveness of the
action (Φ, S) on ∆Φ is a direct consequence of the structural stability (see Theorem 1.1).
Thus, we have the following result.

Theorem 2.1. Let τ = (Φ, S) be a Zd+1−action on ∆Φ, where Φ = F ◦ G and G

is short ranged spatial translation invariant and sufficiently C1-close to identity. Then for

any 0 < q < 1 and any continuous function ϕ on (∆Φ, ρq) there exists an equilibrium

measure µϕ for ϕ with respect to τ . The measure µϕ does not depend on q.

While this theorem guarantees the existence of equilibrium measures for continuous
functions (with respect to ρq-metrics), it does not tell us anything about uniqueness and
ergodic properties of these measures. One can show that uniqueness of equilibrium mea-
sures implies their ergodicity (see [Mañé]) and usually some stronger ergodic properties
(mixing, etc.).

Ruelle [Ru] obtained the following general result about uniqueness which is a direct
consequence of the convexity of the topological pressure on the Banach space C0(∆Φ) of
all continuous functions in a ρq-metric.
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Theorem 2.2. Assume that the map f is topologically mixing. Then for a residual set

of (continuous) functions in C0(∆Φ), the corresponding equilibrium measures are unique.

III. Uniqueness of Equilibrium Measures

Ruelle’s theorem does not specify the class of functions for which the uniqueness
takes place. In this section we establish uniqueness for Hölder continuous functions with
sufficiently small Hölder constant. Our main tool is the thermodynamic formalism applied
to symbolic models corresponding to the coupled map lattices.

3.1. Markov Partitions and Symbolic Representations.

One of the main manifestations of Structural Stability Theorem 1.1 is that the conju-
gacy map h is continuous in ρq-metric and is even Hölder continuous. Therefore, the study
of existence, uniqueness, and ergodic properties of an equilibrium measure µϕ correspond-
ing to a (Hölder) continuous function ϕ on ∆Φ for the perturbed map Φ is equivalent to
the study of these properties for the equilibrium measure µϕ◦h for the unperturbed map
F .

We shall assume that f is topologically mixing and the hyperbolic set Λ is locally
maximal. For any ε > 0 there exists a Markov partition of Λ of “size” ε. This means that
Λ is the union of sets Ri, i = 1, . . . , m satisfying:

1) each set Ri is a “rectangle”, i.e., for any x, y ∈ Ri the intersection of the local
stable and unstable manifolds V s(x) ∩ V u(y) is a single point which lies in Ri;

2) diamRi < ε and Ri is the closure of its interior;
3) Ri ∩Rj = ∂Ri ∩ ∂Rj, where ∂Ri denotes the boundary of Ri;
4) if x ∈ Ri and f(x) ∈ intRj then f(V s(x,Ri)) ⊂ V s(f(x), Rj); if x ∈ Ri and

f−1(x) ∈ intRj then f−1(V u(x,Ri)) ⊂ V u(f(x), Rj); here V s(x,Ri) = V s(x) ∩ Ri and
V u(x,Ri) = V u(x) ∩Ri.

The transfer matrix A = (aij)1≤i,j≤m associated with the Markov partition is defined
as follows: aij = 1 if f(intRi) ∩ intRj 6= ∅ and aij = 0 otherwise.

Let (ΣA, σ) be the associated subshift of finite type (where σ denotes the shift).
For each ξ ∈ ΣA the set

⋂∞
n=−∞ f−n(Rξ(n)) contains a single point. The coding map

π : ΣA → Λ defined by πξ =
⋂∞
n=−∞ f−n(Rξ(n)) is a semi-conjugacy between f and σ,

i.e., f ◦ π = π ◦ σ.
We consider ΣZ

d

A as a subset of the direct product ΩZ
d+1

, where Ω = {1, 2, . . . , m}.
The elements will be denoted by ξ̄ = ξ̄(i, j)i∈Zd,j∈Z, or sometimes by ξ̄ = ξi(j)i∈Zd,j∈Z.
This symbolic space is endowed with the distance

ρq(ξ̄, η̄) = sup
(i,j)∈Zd+1

q|i|+|j||ξ̄(i, j)− η̄(i, j)| (3.1)
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which is compatible with the product topology. Let σt and σs be the time and space
translations on ΣZ

d

A defined as follows: for ξ̄ = (ξi) ∈ ΣZ
d

A , ξi = ξi(·) ∈ ΣA,

(σkt ξ̄)i(j) = ξi(j + k), k ∈ Z; (σks ξ̄)i = ξi+k, k ∈ Zd. (3.2)

We define the coding map π̄ = ⊗i∈Zdπ : ΣZ
d

A → ∆F . It is a semi-conjugacy between the
uncoupled map lattice and the symbolic dynamical system, i.e., the following diagram is
commutative:

∆F
(F,S)−→ ∆F

↑ π̄ ↑ π̄

ΣZ
d

A

(σt,σs)−→ ΣZ
d

A (3.3)

The following statement describes the properties of the map π̄. Its proof follows from
the definitions. We denote the boundary set of the Markov partition for f by ∂R and the
boundary set of the induced Markov partition of ∆F by B. The set B can be written in
the form of a countable union: B = ∪k∈ZdB(k), where B(k) = {x̄ = (xi)i∈zd : xk ∈ ∂R}.

Proposition 3.1. (1) π̄ is surjective and Lipschitz continuous with respect to the

ρq-metric for any 0 < q < 1.

(2) π̄ ◦ σt = F ◦ π̄, π̄ ◦ σs = S ◦ π̄, i. e., π̄ ◦ τ∗ = τ ◦ π̄.

(3) π̄ is injective outside the set
⋃
k∈Zd+1 τ∗k(π̄−1(B)).

3.2. Coupled Map Lattices and Lattice Spin Systems.

The coding map π̄ enables one to reduce the study of the uniqueness and ergodic
properties of equilibrium measures corresponding to a (Hölder) continuous function ϕ on
(∆F , ρq) for the Zd+1-action τ = (F, S) to the study of the same properties of equilibrium

measures corresponding to the function ϕ∗ = ϕ ◦ π̄ on ΣZ
d

A for the action τ∗ = (σt, σs). In
statistical physics the latter is called the lattice spin system. We describe the reduction in
the following series of results.

Theorem 3.1. (1) Let ϕ be a continuous function on ∆F . Then Pτ∗(ϕ∗) ≥ Pτ (ϕ).
(2) Let µ∗ be a τ∗-invariant measure on ΣZ

d

A and µ = µ∗◦ π̄−1
∗ . Then hτ (µ) ≤ hτ∗(µ∗).

As in the case of finite-dimensional dynamical systems it is crucial to know that the
projection measure µ = µ∗ ◦ π̄−1

∗ of the equilibrium measure µ∗ corresponding to the
function ϕ∗ is not concentrated on the boundary B of the Markov partition, i.e., that

µ∗(π̄−1(B)) = 0. (3.4)

13



Theorem 3.2. Let ϕ be a continuous function on ∆F . Assume that the condition

(3.4) holds for any equilibrium measure µ∗ corresponding to ϕ∗ = ϕ ◦ π̄. Then,

(1) the pressure Pτ∗(ϕ∗) = Pτ (ϕ);
(2) the measure µ = µ∗ ◦ π̄−1

∗ is an equilibrium measure corresponding to ϕ;

(3) if µϕ is an equilibrium measure for ϕ on ∆F , then there exists an equilibrium

measure µ∗ for ϕ∗ = ϕ ◦ π̄ with the property µϕ(E) = µ∗(π̄−1(E)) for any Borel set

E ⊂ ∆F .

Theorem 3.1 and Statements 1 and 2 of Theorem 3.2 follow directly from the definitions
of topological pressure and metric entropy for the Zd-actions and the variational principle
(see (2.4) and (2.7)). Statement 3 of Theorem 3.2 can be proved using arguments similar
to those in the finite-dimensional case (see [Bo]). Let A be the set of continuous functions
on ΣZ

d

A of the form g ◦ π̄, where g is a continuous function on ∆F . Clearly, A is a closed
linear subspace of the space of all continuous functions on ΣZ

d

A . Define a linear functional
F on A by the formula g ◦ π̄ →

∫
g dµ and extend it then to the entire space by the Hahn-

Banach theorem. Consider a new functional F∗ which is a weak∗-accumulation point of
the average of translations of F over finite volumes of the lattice. Let µ∗ be the measure
corresponding to F∗. One can see that µ∗ is a translation invariant measure. Finally, one
can use the variational principle to show that µ∗ is an equilibrium measure.

In the finite-dimensional case Condition (3.4) holds provided the potential function
is Hölder continuous. This is due to the fact that the equilibrium measure is unique and
hence is ergodic [Ma]. In the infinite-dimensional case the ergodicity of µ∗ with respect to
time translations is still sufficient for (3.4) to hold.

Theorem 3.3. [J1] Let µ∗ be an equilibrium measure corresponding to a Hölder

continuous function on ΣZ
d

A . Assume that µ∗ is ergodic with respect to the time translation

σt. Then it satisfies Condition (3.4).

The proof of this theorem is similar to the argument in the finite-dimensional case
(see [Bo]). The boundary B can be represented as the union B = ∪k∈ZdB(k), where
B(k) = {x̄ = (xi) : xk lies on the boundary of the Markov partition for fk}. Each B(k)
can be decomposed into “stable” and “unstable” parts, B+(k) and B−(k) (depending on
whether xk lies on stable or unstable local manifolds). The stable part is invariant under
F and is a closed subset. Thus, its preimage in ΣZ

d

A , π̄−1(B+(k)) is a closed subset and is
invariant under time translations. By ergodicity, its measure is either zero or one. Since
every equilibrium measure is a Gibbs state and takes on positive values on open sets (see
below) the measure of the stable part π̄−1B+(k) is zero. Applying the above arguments to
the inverse of F , we conclude that the measure of the unstable part π̄−1B−(k) is also zero
and hence the equation (3.4) holds for the whole boundary set.
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Uniqueness of the equilibrium measure implies its ergodicity with respect to the Zd+1-
action induced by (F, S). This is weaker than ergodicity with respect to the time trans-
lation. In [J1], the author proved directly that for a class of Hölder continuous functions
Condition (3.4) holds.

Recall that a function ϕ on ∆F is Hölder continuous in the ρq-metric if

|ϕ(x̄)− ϕ(ȳ)| ≤ cραq (x̄, ȳ),

where x̄ = (xi), ȳ = (yi) ∈ ∆F . Note that if the function ϕ is Hölder continuous on ∆F

(in the ρq-metric) then the function ϕ∗ = ϕ · π̄ on ΣZ
d

A is also Hölder continuous. The
following statement enables one to reduce the study of the uniqueness problem for coupled
map lattices to the study of the same problem for lattice spin systems.

Theorem 3.4. [J1] Let ϕ be a Hölder continuous function on (∆F , ρq). Assume in

addition that

|ϕ(x̄)− ϕ(ȳ)| ≤ cραq (x̄, ȳ),

where x̄ = (xi), ȳ = (yi) ∈ ∆F , x0 = y0, and c is sufficiently small. Then, µ∗(π̄−1(B)) = 0
holds for any equilibrium measure µ∗ for ϕ∗ on ΣZ

d

A . Therefore, for this class of potential

functions, the uniqueness of equilibrium measure for ϕ∗ implies the uniqueness of equilib-

rium measure for ϕ.

In the next section we shall actually show that the equilibrium measure for ϕ∗ is
unique and exponentially mixing for the class of Hölder continuous functions satisfying
the condition of Theorem 3.4.

3.3. Gibbs States for Lattice Spin Systems.

We remind the reader of the concept of Gibbs states for lattice spin systems of statis-
tical physics.

An element ξ̄ ∈ ΣZ
d

A ⊂ ΩZ
d+1

is called a configuration. For any subset X ⊂ Zd+1 we
set

ΩX = {η̄ ∈ ΩX : there exists ξ̄ ∈ ΣZ
d

A such that η̄(i) = ξ̄(i), i ∈ X}.

The elements of ΩX will be denoted by ξ̄X , or sometimes by ξ̄(X). One can say that ΩX
consists of restrictions of configurations ξ̄ to X .

Let ϕ be a Hölder continuous function on ΣZ
d

A with respect to the ρq-metric (see (3.1)).

For each finite subset X ⊂ Zd+1 define the function pX(ξ̄) on ΣZ
d

A by

pX(ξ̄) =
1∑

η̄,η̄(X̂)=ξ̄(X̂)
exp

(∑
x∈Zd+1 ϕ(τxη̄)− ϕ(τxξ̄)

) , (3.5)
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where τx is the action (σt)i ◦ (σs)j , X̂ = Zd+1 \X , and x = (i, j), i ∈ Zd, j ∈ Z.
A probability measure µ on ΣZ

d

A is called a Gibbs state for ϕ if for any finite subset
X ⊂ Zd+1,

µX(ξ̄X) =
∫

Ω
X̂

pX(ξ̄)dµ
X̂

(3.6)

where µX and µ
X̂

are the probability measures on ΩX and Ω
X̂

respectively that are induced
by natural projections. This equation is known as the Dobrushin-Ruelle-Lanford equation.

There is an equivalent way to describe Gibbs states corresponding to Hölder continuous
functions on symbolic spaces. Let ϕ be such a function. For each finite volume X we define
a conditional Gibbs distribution on ΩX under the given boundary condition η̄∗ by

µη̄∗,X(ξ̄(X)) =
1∑

η̄,η̄(X̂)=η̄∗(X̂)
exp

(∑
x∈Zd+1 ϕ(τxη̄)− ϕ(τx(ξ̄(X) + η̄∗(X̂))

) , (3.7)

where ξ̄(X)+ η̄∗(X̂) denotes the (admissible) configuration on X ∪ X̂ whose restrictions to
X and X̂ are ξ̄(X) and η̄∗(X̂) respectively. The set of all Gibbs states for ϕ is the convex
hull of the thermodynamic limits of the conditional Gibbs distributions.

The relation between translation invariant Gibbs states and equilibrium measures can
be stated as follows (see [Ru]).

Theorem 3.5. If the transfer matrix A is aperiodic then µ is an equilibrium measure

for ϕ if and only if it is a translation invariant Gibbs state for ϕ.

In statistical mechanics Gibbs states are usually defined for potentials rather than for
functions. We briefly describe this approach.

A potential U is a collection of functions defined on the family of all finite configura-
tions, i.e.,

U = {UX : X ⊂ Zd+1, UX : ΩX → R}.

Gibbs states for a potential U are defined as the convex hull of the thermodynamic limits
of the conditional Gibbs distributions:

µη̄∗,X(ξ̄(X)) =
exp(

∑
V ∩X 6=∅ UV (ξ̄(X) + η̄∗(X̂))∑

η̄,η̄(X̂)=η̄∗(X̂)
exp(

∑
V ∩X 6=∅ UV (η̄))

, (3.8)

where η̄∗ is a fixed configuration.
We describe potentials corresponding to Hölder continuous functions (in the ρq-metric

(see (3.1)). Let ϕ be such a function. We write ϕ in the form of a series

ϕ =
∞∑
n=0

ϕn. (3.9)
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Here the value of ϕn depends only on configurations inside the (d + 1)-dimensional cube
Qn centered at the origin of side 2n × · · · × 2n. We also set Q0 = (0, 0). We define the
functions ϕn as follows. Fix a configuration η∗ and set

ϕ0(ξ̄) = ϕ
(
ξ̄(Q0) + η̄∗(Q̂0)

)
. (3.10)

Continuing inductively we define

ϕn+1(ξ̄) = ϕ
(
ξ̄(Qn+1) + η̄∗(Q̂n+1)

)
− ϕ

(
ξ̄(Qn) + η̄∗(Q̂n)

)
, n = 1, 2, . . . . (3.11)

It is easy to see that ‖ϕn‖ → 0 exponentially fast as n→∞. We define the potential Uϕ
associated with the function ϕ on Qn by setting

Uϕ(ξ̄(Qn)) = ϕn(ξ̄(Qn)). (3.12)

For other (d+1)-dimensional cubes that are translations of Qn we assign the same value of
Uϕ. For other finite subsets of Zd+1 we define the potential to be zero. Thus, we obtain a
translation invariant potential whose values on finite volumes decrease exponentially when
the diameter of the volume grows.

If ϕ0 = 0, the value of the corresponding potential Uϕ is bounded by the Hölder
constant of the function ϕ. More generally, let us set

F(α, q, ε) = {ϕ : |ϕ(ξ̄)− ϕ(η̄)| ≤ εραq (ξ̄, η̄)}, (3.13)

‖UQn‖ = sup
ξ(Qn)∈ΩQn

|UQn(ξ̄(Qn))|, (3.14)

P(q, ε) = {U : sup
n≥1

q−n‖UQn‖ ≤ ε}. (3.15)

It is easy to see that, if ϕ ∈ F(α, q, ε), then Uϕ ∈ P(qα, ε). On the other hand, Uϕ ∈ P(q, ε)
implies ϕ ∈ F(1/2, q, ε).

The definition of Gibbs states corresponding to potentials is consistent with the one
corresponding to functions. More precisely, Gibbs distributions corresponding to a Hölder
continuous function ϕ are exactly the Gibbs distributions corresponding to the potential
Uϕ.

As we have seen the problem of uniqueness of equilibrium states on symbolic spaces can
be reduced to the problem of uniqueness of translation invariant Gibbs states provided the
function ϕ is Hölder continuous. This problem has been extensively studied in statistical
physics for a long time. In the one-dimensional case (when d = 0) Gibbs states are always
unique and are mixing with respect to the shift provided the potential decays exponentially
fast as the length of intervals goes to infinity (see [Ru]). In the case of higher dimensional
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lattice spin systems the well-known Ising model provides an example where the Gibbs
states are not unique even for potentials of finite range (see [Sim]). We first describe the
two-dimensional Ising model in the context of spin lattice systems.

Example 1: The Ising Model (d = 1). Define the potential function ϕ on Ω by

ϕ(ξ̄) = β
(
ξ̄(1, 0)ξ̄(0, 0) + ξ̄(0, 0)ξ̄(0, 1)

)
. (3.16)

Then the following statements hold:
(1) ϕ(ξ̄) depends only on the values of ξ̄ at three lattice points: (1, 0), (0, 0), and (0, 1)

and is Hölder continuous;

(2) there exists β0 > 0 such that for β > β0 Gibbs states corresponding to the potential

Uϕ generated by ϕ are not unique.

Based upon this Ising model we describe now an example of a coupled map lattice
and a Hölder continuous function with non-unique equilibrium measure.

Example 2: Phase Transition For Coupled Map Lattices. Let M be a compact
smooth surface and (Λ, f) the Smale horseshoe. One can show that the semi-conjugacy
π̄ between M = ⊗i∈ZM and {0, 1}Z2

induced by the Markov partition can be chosen
as an isometry. Thus, the function ψ = ϕ ◦ π̄−1 is Hölder continuous on ∆F , where the
function ϕ is chosen as in Example 1. Since the boundary of the Markov partition is empty
Condition (3.1) holds. We conclude that there are more than one equilibrium measure for
the function ψ.

The following statement provides a general sufficient condition for uniqueness of Gibbs
states. Let U be a translation invariant potential on the configuration space ΩZ

d+1
, where

Ω = {1, 2, . . . , m}.

(1) ( Dobrushin’s Uniqueness Theorem [D1], [Sim]): Assume that∑
X: 0∈X

(|X | − 1)||U(X)|| < 1. (3.17)

Then the Gibbs state for U is unique.

(2) ([Gro], [Sim]): There exist r > 0 and ε > 0 such that if∑
X: 0∈X

erd(X)||U(X)|| ≤ ε (3.18)

(d(X) denotes the diameter of X) then the unique Gibbs state is exponentially mixing

with respect to the Zd+1-action on ΩZ
d+1

.

The proof of Dobrushin’s uniqueness theorem exploits the direct product structure of
the configuration space ΩZ

d+1
. This result cannot be directly applied to establish unique-

ness of Gibbs states for lattice spin systems, which are symbolic representations of coupled
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map lattices, because the configuration space ΣZ
d

A is, in general, a translation invariant
subset of ΩZ

d+1
. In [BuSt], the authors constructed examples of strongly irreducible sub-

shifts of finite type for which there are many Gibbs states corresponding to the function
ϕ = 0. In order to establish uniqueness we will use some special structure of the space
ΣZ

d

A : it admits subshifts of finite type in the “time” direction and the Bernoulli shift in
the “space” direction.

We now present the main result on uniqueness and mixing property of Gibbs states
for lattice spin systems which are symbolic representations of coupled map lattices of
hyperbolic type. In the two-dimensional case (d = 1), it was proved by Jiang and Mazel
(see [JM]). In the multidimensional case it was established by Bricmont and Kupiainen
(see [BK3]).

A potential U0 on ΣZA is called longitudinal if it is zero everywhere except for configu-
rations on vertical finite intervals of the lattice. A potential U0 is said to be exponentially
decreasing if

|U0(ξ̄(I))| ≤ Ce−λ|I| (3.19)

where C > 0 and λ > 0 are constants, I is a vertical interval (i.e., in the time direction),
|I| is its length, and ξ̄(I) is a configuration over I. Exponentially deceasing longitudi-
nal potentials correspond to those potential functions whose values depend only on the
configuration ξ̄(0, j), j ∈ Z.

We say that a Gibbs state is exponentially mixing if for every integrable function on
the configuration space the Zd+1-correlation functions decay exponentially to zero.

Theorem 3.6 (Uniqueness and Mixing Property of Gibbs States). For any

exponentially deceasing longitudinal potential U0 and every 0 < q < 1, there exists ε > 0
such that the Gibbs state for any potential U = U0 + U1 with U1 ∈ P(q, ε) is unique and

exponentially mixing.

Proof. We provide a brief sketch of the proof assuming first that U0 = 0 and d = 1.
We may assume that the potential is non-negative (otherwise, the non-negative potential
U ′(η(Q)) = U(η(Q)) + maxη(Q) |U(η(Q))| defines the same family of Gibbs distributions).

We introduce a new potential Ũ which is defined on rectangles and is equivalent to the
potential U . The latter means that both potentials generate the same conditional Gibbs
distributions. Consider a square Q and a rectangle P and denote by b(Q) = (b1(Q), b2(Q))
and b(P ) = (b1(P ), b2(P )) the left lowest corners of Q and P , respectively. Fix L > 0 (its
choice will be specified later) and define a rectangular potential Ũ(η̄(P )) in the following
way. For every rectangle P with b2(P ) = nL, n ∈ Z of size l(P )× Ll(P ) we have

Ũ(η̄(P )) =
∑

Q:Q∼P
U(η̄(Q)), (3.20)
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where the sum is taken over all squares Q associated with P (we write this as Q ∼ P ) i.e.,
the following condition holds: Q is of size l(P )× l(P ) and b1(Q) = b1(P ), b2(P ) ≤ b2(Q) <
b2(P ) + L. It is easy to show that Ũ ∈ P(q, δ), where δ = δ(ε)→ 0 as ε→ 0.

Let V ⊂ Z2 be any finite volume. Fix a boundary condition η̄∗(V̂ ). For any config-
uration ξ̄(V ) such that ξ̄(V ) + η̄∗(V̂ ) is a configuration in Z2 a conditional Hamiltonian
specified by the potential Ũ(η̄(P )) is defined as follows (see A2.3)

HŨ (ξ̄(V )|η̄∗(V̂ )) = −
∑

P∩V 6=∅
Ũ
(
η̄(P )|ξ̄(V ) + η̄∗(V̂ )

)
.

The expression Ũ
(
η̄(P )|ξ̄(V )+η̄∗(V̂ )

)
means that the potential Ũ(η̄(P )) is evaluated under

the condition that ξ̄(V ) + η̄∗(V̂ ) is fixed. It is easy to see that

HŨ (ξ̄(V )|η̄∗(V̂ )) = −
∑

Q:Q∩V 6=∅
U
(
η̄(Q)|ξ̄(V )+η̄∗(V̂ )

)
−
∑

P∩V 6=∅

∑
Q:Q∼P
Q∩V=∅

U
(
η̄(Q)|ξ̄(V )+η̄∗(V̂ )

)

= HU (ξ̄(V )|η̄∗(V̂ ))−
∑

P∩V 6=∅

∑
Q:Q∼P
Q∩V=∅

U
(
η̄(Q)|ξ̄(V ) + η̄∗(V̂ )

)
. (3.21)

The conditional Gibbs distributions defined by (3.8) for the potential Ũ can be expressed
in terms of the conditional Hamiltonian as follows

µ
V,η̄∗

(ξ̄(V )) =
exp

(
H(ξ̄(V )|η̄∗(V̂ ))

)
Ξ(V |η̄∗(V̂ ))

, (3.22)

where
Ξ(V |σ′(V̂ )) =

∑
η̄(V )

exp
(
H(η̄(V )|η̄∗(V̂ ))

)
is the partition function for the potential Ũ in the volume V with the boundary condition
η̄∗(V̂ ) (see (A2.2) and (A2.4)). It follows from (3.21) that

exp
(
HU (ξ̄(V )|η̄∗(V̂ ))

)∑
η̄(V ) exp

(
HU (η̄(V )|η̄∗(V̂ ))

) =
exp

(
HŨ (ξ̄(V )|η̄∗(V̂ ))

)∑
η̄(V ) exp

(
HŨ (η̄(V )|η̄∗(V̂ ))

) .
Therefore, the potentials U and Ũ generate the same conditional Gibbs distributions on
any finite volume V ⊂ Z2.

Let B ⊂ V ⊂ Z2. We use (3.22) to compute the probability µ
V,η̄∗

(ξ̄(B)) of the
configuration ξ̄(B) under the boundary condition and wish to show that it has a limit as
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V → Z2 independent of η̄∗. The latter is the unique Gibbs state for the potential Ũ . Using
(3.22) we obtain the following formula for the conditional measure µ

V,η̄∗
(ξ̄(B)):

µ
V,η̄∗

(ξ̄(B)) =
∑

η̄(V ):η̄(V )|B=ξ̄(B)

µ
V,η̄∗

(η̄(V )).

We wish to use the Polymer Expansion Theorem (see Appendix) and decompose the above
expression in the form of (A4.3). Namely,

µ
V,η̄∗

(ξ̄(B)) =

N(B) exp

∑
P⊆B

Ũ(η̄(P )) +
∑

℘:℘∩V \B 6=∅
w(℘|ξ̄(B) + η̄∗(V̂ ))−

∑
℘:℘∩V 6=∅

w(℘|η̄∗(V̂ ))

 ,
(3.23)

where N(B) is the normalizing factor determined the volume B (see (A4.4)), w(℘|η̄∗(V̂ ))
and w(℘|ξ̄(B) + η̄∗(V̂ )) are the statistical weights for the polymer ℘ (see (A4.3)), and P

is a rectangle. If the parameter L in the definition of the rectangles is chosen sufficiently
large and ε is sufficiently small by the Polymer Expansion Theorem, each sum in (3.23)
converges to a limit uniformly in P(q, δ).

The above argument can be extended to the general case when U0 is an exponentially
decreasing longitudinal potential (see [JM] for detail). The case d > 1 is considered by
Bricmont and Kupiainen in [BK3] and is treated in a slightly different way by obtaining
polymer expansions of correlation functions. �

Theorems 3.4 and 3.6 enable us to obtain the following main result about uniqueness
and mixing property of equilibrium measures for coupled map lattices.

Theorem 3.7. Let (Φ, S) be a coupled map lattice and ϕ = ϕ0 + ϕ1 a function

on ∆Φ, where ϕ0 is a Hölder continuous function depending only on the coordinate x0

and ϕ1 is a Hölder continuous function with a small Hölder constant in the metric ρq.

Then there exists a unique equilibrium measure µϕ on ∆Φ corresponding to ϕ. This

measure is mixing and takes on positive values on open sets. Furthermore, the correlation

functions decay exponentially for every Hölder continuous function on ∆Φ satisfying the

above assumptions.

IV. Finite-Dimensional Approximations

In this section we describe finite-dimensional approximations of equilibrium measures
for coupled map lattices. One should distinguish two different types of approximations: by
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Zd+1-action equilibrium measures and Z-action equilibrium measures. The first come from
the corresponding Zd+1-dimension lattice spin system while the second one is a straight-
forward finite-dimensional approximation of the initial coupled map lattice.

In order to explain some basic ideas concerning finite-dimensional approximations we
first consider an uncoupled map lattice (M, F ). Let ϕ be a Hölder continuous function
on M which depends only on the central coordinate, i.e., ϕ(x̄) = ψ(x0), where ψ is a
Hölder continuous function on M (whose Hölder constant is not necessarrily small). It is
easy to see that the equilibrium measure µϕ corresponding to ϕ is unique with respect to
the Zd+1-action (F, S) and that µϕ = ⊗i∈Zd µψ, where µψ is the equilibrium measure on
Λ ⊆ M for ψ with respect to the Z-action generated by f . One can also verify that for
any finite set X ⊂ Zd the measure µX = ⊗i∈X µψ is the unique equilibrium measure on
the space MX = ⊗i∈XM corresponding to the function ϕX =

∑
i∈X ϕ(Six̄) with respect

to the Z-action FX = ⊗i∈X f . Clearly, µXn → µϕ in the weak∗-topology for any sequence
of subsets Xn → Zd (i.e., Xn ⊂ Xn+1 and

⋃
n≥0 Xn = Zd).

It is worth emphasizing that the sequence of the functions ϕXn does not converge to
a finite function on M as n→ ∞ while the corresponding Z-action equilibrium measures
µϕXn approach the Zd+1-action equilibrium measure µϕ.

On the other hand, one can consider ϕ as a function on the space MX provided
0 ∈ X . The unique equilibrium measure with respect to the Z-action generated by FX is
µψ ×⊗i∈X,i6=0 ν0, where ν0 is the measure of maximal entropy on M .

This simple example illustrates that the Zd+1-action equilibrium measures correspond-
ing to a function ϕ may not admit approximations by the Z-action equilibrium measures
corresponding to the restrictions of ϕ to finite volumes.

4.1. Continuity of Equilibrium Measures Over Potentials.

In this section we show that equilibrium measures for coupled map lattices depend
continuously on their potential functions in the weak∗-topology.

Fix 0 < q < 1 and consider the space of all Hölder continuous functions on ∆Φ with
Hölder exponent 0 < α < 1 and Hölder constant ε > 0 in the metric ρq. We denote this
space by F̃(α, q, ε). It is endowed with the usual supremum norm ‖ϕ‖. We also introduce
the qα-norm on this space by

‖ϕ‖qα = max{sup
n≥0

q−αn sup
x̄,ȳ∈∆Φ

|ϕ(x̄)− ϕ̃(ȳ)|, ‖ϕ‖}, (4.1)

where the second supremum is taken over all points x̄, ȳ for which xi = yi for |i| ≤ n.
The following statement establishes the continuous dependence of equilibrium mea-

sures for coupled map lattices for potential functions in F̃(α, q, ε). We provide a proof in
the case d = 1 using an approach based on polymer expansions. If d > 1 the continuous
dependence still holds and can be established using methods in [BK3].
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Theorem 4.1. There exists ε > 0 such that the unique equilibrium measure µϕ
on ∆Φ depends continuously (in the weak∗-topology) on ϕ ∈ F̃(α, q, ε) with respect to

the norm ‖ · ‖qα , i.e., for ψm ∈ F̃(α, q, ε), ‖ψm − ϕ‖qα → 0 implies µψm → µϕ in the

weak∗-topology.

Proof. Observe that the convergence ‖ψm − ϕ‖qα → 0 implies the convergence of
corresponding potentials on the symbolic space. Therefore, we need only to establish the
continuity of the Gibbs state for the corresponding symbolic representation. For a potential
U on ΣZA its norm ‖ · ‖q is defined as

‖U‖q = sup
n≥0

q−n‖UQn(ξ̄Qn)‖, (4.2)

where 0 < q < 1. By Theorem 3.6 the Gibbs state is unique when ‖U‖q is sufficiently
small. We denote the Gibbs state for U by µU . We show that for any cylinder set E ⊂ ΣZA,
µU (E) depends on U continuously in a neighborhood of the zero potential in the set
P(q, 1) = {U : ‖U‖q ≤ 1}.

For this purpose we use the explicit expression of µU (E) in terms of the potential U
provided by the Polymer Expansion Theorem (see (A4.5)). Namely, for a non-negative
potential U ∈ P(q, ε) and any finite volume B ⊂ Z2 we have that

µU (ξ̄(B)) = N(B) exp

∑
P⊆B

U(ξ̄(P )) +
∑

℘:dist(℘̄,B)≤1

dist(℘̄,B̂)=0

w(℘|ξ̄(B))−
∑

℘:dist(℘̄,B)≤1

w(℘)

 ,
(4.3)

where N(B) is a normalizing factor determined by the volume B (see (A4.4)), w(℘) and
w(℘|ξ̄(B)) are the statistical weights for the polymer ℘ (see (A4.5)), and P is a rectangle.
By the Polymer Expansion Theorem the statistical weights w(℘) and w(℘|ξ̄(B)) (B is
fixed) depend continuously on U(η(P )) with respect to the norm ‖ · ‖q. This implies that
µU depends weakly continuously on U .

To show that µU depends on U continuously for all (not necessarily non-negative)
potentials U ∈ P(q, ε/4) let us consider the potential Uε defined as U(ξ̄(Qn)) = εqn. Then,
for any U ∈ P(q, ε/4) we have that

U + Uε/4 ≥ 0, U + Uε/4 ∈ P(q, 1/2ε).

Note that given Qn, Uε is a constant potential on Qn. Therefore, Gibbs distributions for
U and U + Uε/4 coincide and hence,

µU = µU+Uε/4
. (4.4)
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This implies the desired result. �

4.2. Finite-Dimensional Zd+1-Approximations.

We now describe finite-dimensional Zd+1-approximations of equilibrium measures for
coupled map lattices.

Let ϕ ∈ F̃(α, q, ε) be a Hölder continuous function on ∆Φ. Fix a point x̄∗ = (x∗i )
which we call the boundary condition. Given a finite volume V ⊂ Zd consider the function
on ∆Φ

ϕn,x̄∗(x̄) = ϕ(x̄|V , x̄∗|V̂ ). (4.5)

One can see that
‖ϕn,x̄∗ − ϕ‖qα1 → 0 (4.6)

as n → ∞ for any q1 with 0 < q < q1. The following result is an immediate corollary of
Theorem 4.1.

Theorem 4.2. µϕn,x̄∗
weak∗−→ µϕ independently of the boundary condition x̄∗ (recall

that µϕn,x̄∗ is the unique equilibrium measure corresponding to the function ϕn,x̄∗ and µϕ
is the unique equilibrium measure corresponding to the function ϕ).

4.3. Finite-Dimensional Z-Approximations I: Uncoupled Map Lattices.

We describe some “natural” finite-dimensional approximations of equilibrium mea-
sures for coupled map lattices by Z-action equilibrium measures. We first consider an
uncoupled map lattice (F, S) in the space (M, ρq).

For every volume V ⊂ Zd we setMV = ⊗i∈VMi, FV = ⊗i∈V fi, and ∆F,V = ⊗i∈V Λi.
One can see thatMV is a smooth finite-dimensional manifold, FV is a Cr-diffeomorphism
of MV , and ∆F,V is a locally maximal hyperbolic set for FV .

Fix a point x̄∗ = (x∗i ) ∈ ∆F (the boundary condition) and consider a Hölder continuous
function ϕ ∈ F̃(α, q, ε) on ∆F . Define the function ψV,x̄∗ on ∆F,V by

ψV,x̄∗(x) =
∑
i∈V

ϕ(Si(x, x∗|
∆̂F,V

)). (4.7)

Consider the Z-action equilibrium measure νV corresponding to the function ψV,x̄∗ . We
can view these measures as being supported onM. Let µϕ be the Zd+1-action equilibrium
measure corresponding to ϕ. This measure is concentrated on ∆F and thus can also be
viewed as being supported on M.

Theorem 4.3. There exists c0 > 0 such that if 0 < ε ≤ c0 then µϕ is the limit (in

the weak∗-topology) of equilibrium measures νV as V → Zd in the sense of van Hove, i.e.,

for any fixed a ∈ Zd,

lim
V→Zd

|τa
(
V
)
\ V |

|V | = 0.
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Proof. We consider only the case d = 1. For d > 1 the arguments are similar. It is
sufficient to prove the convergence of the measures ν∗V = νV π̄ to the measure µ∗ = µϕ∗

(ϕ∗ = ϕ ◦ π̄) on the symbolic space ⊗ZΣA as V → Z.
Let us fix a configuration η̄∗ on Z2. Given n > 0 and m > 0, consider the rectangle

Vnm = {x = (i, j) ∈ Z2 : |i| ≤ n, |j| ≤ m} and define the Gibbs distribution on Vnm as
follows: for any configuration ξ̄(Vnm) over the volume Vnm we set

µnm(ξ̄(Vnm)) =

exp
∑

x∈Vnm

ϕ∗
(
τx(ξ̄(Vnm) + η̄∗(V̂nm)

)
∑

η̄(Vnm)

exp
∑

x∈Vnm

ϕ∗
(
τx(η̄(Vnm) + η̄∗(V̂nm)

) . (4.8)

Given a finite volume W ⊂ Z2, for sufficiently large n and m we have that W ⊂ Vnm.
Therefore, the set configurations ξ̄(W ) over W is a subset of the configuration space ξ̄(Vnm)
over Vnm. We denote by µnm(ξ̄(W )) the measure on this set where µnm is defined by (4.8).

By the definition of Gibbs states and the uniqueness of µ∗ the measure µ∗ is the ther-
modynamic limit of measures µnm, i.e., for any finite volume W ⊂ Z2 and any configuration
ξ̄(W ) over W ,

µ∗(ξ̄(W )) = lim
Vnm→Z2

µnm(ξ̄(W )),

where Vnm converges to Z2 in the sense of van Hove.
We observe that for each n > 0, there exists the limit ν∗n = limm→∞ µnm which is the

Z-action Gibbs state for the function ψ∗Vn,η∗ on Vn = ⊗ni=−nΣA. Thus, for each fixed n

there exists m(n) such that

|µnm(n)(ξ̄(W ))− νn(ξ̄(W ))| ≤ 1
n

for every W ⊂ Vnm. Notice that Vnm(n) → Z2 in the sense of van Hove. This implies that
limn→∞ νn = limn→∞ µnm(n) = µϕ. �

4.4. Finite-Dimensional Z-Approximations II: Coupled Map Lattices.

We consider a coupled map lattice (Φ, S) in the space (M, ρq) and define its finite-
dimensional approximations as follows.

Fix a point x̄∗ ∈ ∆Φ (the boundary condition). For any finite volume V ⊂ Zd consider
the map on MV (

ΦV (x)
)
i

=
(
Φ((x, x∗|

V̂
)
)
i
, (4.9)
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where ()i denotes the coordinate at the lattice site i. One can see that if the perturbation is
sufficiently small then ΦV is a diffeomorphism of MV . It can be written as ΦV = GV ◦FV ,
where GV is the restriction of G to MV :

GV (x) = G(F
V̂

(x∗|
V̂

), x). (4.10)

Since the diffeomorphism ΦV is closed to the diffeomorphism FV by the structural stability
theorem it possesses a locally maximal hyperbolic set which we denote by ∆Φ,V . Moreover,
there exists a conjugacy homeomorphism hV : ∆F,V → ∆Φ,V which is close to identity.

The maps ΦV and hV provide finite-dimensional approximations for the infinite-
dimensional maps Φ and h respectively. In order to describe this in a more explicit way
we introduce the following maps:

Φ̃V (x̄) = (ΦV (x̄|V ), F
V̂

(x̄|
V̂

)), h̃V (x̄) = (hV (x̄|V ), id
V̂

(x̄|
V̂

)).

We denote by d0
q and d1

q the C0 and respectively C1 distances in the space of diffeomor-
phisms induced by the ρq-metric. We also use d(0, ∂V ) to denote the shortest distance
from the origin of the lattice to the boundary of the set V .

Theorem 4.4. There exist constants C > 0 and β > 0 such that for any V ⊂ V ′ ⊂ Zd,
(1) d1

q(ΦV ,ΦV ′) ≤ Ce−βd(0,∂V ) and ΦV → Φ.

(2) d0
q(hV , hV ′) ≤ Ce−βd(0,∂V ) and hV → h.

Proof. The first statement is obvious since Φ is short ranged. The proof of the second
statement is based on arguments in the proof of structural stability (see Theorem 1.1). We
recall that the conjugacy map h is determined as a unique fixed point for a contracting
map K acting on a ball Dγ(0) contained in the Banach space Γ0(∆F , TM) of all continuous
vector fields on ∆F (see (1.16)).

In order to obtain the conjugacy map hV one needs to find a (unique) fixed point for
a contracting map KV acting in Dγ(0) by a formula similar to (1.16):

KV v = −((DG′V )|0 − Id)−1(G′V v − (DG′V )|0v),

where G′V = A ◦ GV ◦ A−1 (see (1.14)) and G′V β = Φ̃V ◦ β ◦ F−1. One can show that the
contraction coefficient of FV is uniform over V and that FV converges exponentially fast
to F . Therefore, the corresponding fixed point hV converges exponentially fast to h. �

For a Hölder continuous function ϕ ∈ F̃(α, q, ε) on ∆Φ consider the function ϕ̃ = ϕ◦h
on ∆F , where h : ∆F → ∆Φ is a conjugacy homeomorphism. Let ν̃V be the Z-action
equilibrium measure on ∆F,V corresponding to the function ψ̃V,x̄∗ which is determined by
(4.7) with respect to the function ϕ̃. Finally, we define the measure νV = (h−1

V )∗ ◦ ν̃V on
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∆Φ,V . It also can be considered as a measure onM. As a direct consequence of Theorem
4.3 we conclude the following result

Theorem 4.5. If ε is sufficiently small then the measure µϕ is the limit (in the

weak∗-topology) of the measures νV as V → Zd.

V. Existence, Uniqueness, and Ergodic Properties of SRB-Measures

In this section we discuss the problems of existence and uniqueness of Sinai-Bowen-
Ruelle measures for coupled map lattices as well as some of their ergodic properties (includ-
ing mixing and decay of correlations). The first construction of these measures appeared in
[BuSi]. In [BK2], Bricmont and Kupiainen constructed these measures for general expand-
ing circle maps. Their approach is based upon the study of the Perron–Frobenius operator.
In [PS], Pesin and Sinai developed another method for constructing SRB-measures for cou-
pled map lattices assuming that the local map possesses a hyperbolic attractor.

In this section we develop a new approach and obtain stronger results under more
general assumptions.

Let f be a Cr-diffeomorphism of a compact finite-dimensional manifold M possessing
a hyperbolic attractor Λ. The latter means that Λ is a hyperbolic set and there exists an
open neighborhood U of Λ such that f(U) ⊂ U . In particular, Λ = ∩n>0f

n(U) and is a
locally maximal invariant set. We assume that the map f is topologically mixing. Then
an SRB-measure µ on Λ is unique and is characterized as follows:

1) the conditional distributions generated by µ on the unstable manifolds are abso-
lutely continuous with respect to the Lebesgue measure;

2) for any continuous function g and almost all x ∈ U with respect to the Lebesgue
measure in U ,

lim
n→∞

1
n

n−1∑
k=0

g(fkx) =
∫
gdµ; (5.1)

3) µ is the unique equilibrium measure corresponding to the Hölder continuous func-
tion ϕu(x) = − log Jacu f(x), where Jacu f(x) denotes the Jacobian of f at x along the
unstable subspace.

In the infinite-dimensional case we construct a measure on ∆Φ which has similar
properties. This is an SRB-measure for the coupled map lattice. Our construction is
based upon symbolic representations of the finite-dimensional approximations of the lattice
constructed in the previous section.

Let V ∈ Zd be a finite volume. Consider the diffeomorphisms FV and ΦV . Since ΦV
is close to FV it has a hyperbolic attractor ∆Φ,V .
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Since we assume that the map f is topologically mixing then so are the maps F, Φ, FV ,
and ΦV . Therefore, the map ΦV possesses the unique SRB-measure µV that is supported
on ∆Φ,V . This measure is the unique equilibrium measure corresponding to the Hölder
continuous function ϕV (x) = − log Jacu ΦV (x), where Jacu ΦV (x) is the Jacobian of the
map ΦV at x along the unstable subspace. We can consider the measure µV to be supported
on the compact space (M, ρq). Our main result is the following.

Theorem 5.1. The SRB-measures µV weak∗ converge to a measure on M which is

a unique equilibrium measure µ = µϕ corresponding to a Hölder continuous function ϕ

onM and is mixing. Furthermore, the correlation functions decay exponentially for every

continuous function on M satisfying the assumptions of Theorem 3.1.

Remarks. (1) It is clear that for an uncoupled map lattice the SRB-measures µV con-
verge to the measure ⊗i∈Zdµf which is the equilibrium measure for the potential function
ϕ0(x̄) = − log Jacu f(x0). The potential function ϕ(x̄) of the SRB-measure for a coupled
map lattice is a small perturbation of ϕ0(x̄). More precisely, ϕ(x̄) = ϕ0(x̄) + ϕ1(x̄) where
ϕ1(x̄) is a Hölder continuous function with sufficiently small Hölder constant. Its precise
description is given by (5.15).

(2) We follow the approach suggested in [BK2], [BK3]. We thank J. Bricmont who
suggested to use the formula (5.8) to expand the Jacobian.

(3) To avoid some technical obstacles we assume that f is an Anosov map. In this
case ∆ΦV = ∆FV = MV . The general case of hyperbolic attractors can be treated in a
similar way with the use of Theorem 4.4.

(4) Another approach for the existence of SRB-measures was suggested in [PS]. It is
based upon a delicate analysis of conditional measures generated by measures µV on finite-
dimensional unstable manifolds for ΦV . Combining results in [PS] and Theorem 5.1 one
can show that these conditional measures determine the conditional measures, generated
by the SRB-measure µϕ on infinite-dimensional unstable manifolds for Φ in a unique way.
This justifies one of the main characteristic features of SRB-measures.

(5) Using the finite-dimensional approximations approach developed in the proof of
Theorem 5.1 one can show that the Zd+1-topological pressure Pτ (ϕ) = 0, where ϕ is the
potential function for the SRB-measure. Since the SRB-measure is an equilibrium measure
in view of (2.9) we obtain the entropy formula for the SRB-measure

hτ (µϕ) = −
∫
ϕdµϕ

(see detailed arguments in [J3]).
(6) Another interesting manifestation of our construction of the SRB-measure is the

continuous dependence of the entropy on the perturbation Φ. Using arguments in the proof
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presented below one can show that the potential function depends continuously on the map
Φ in the ρq-metric. Moreover, the SRB-measure as a Gibbs state is also continuous in the
weak sense with respect to the potential function (see Section 4.1). Therefore, the entropy
formula gives the continuous dependence.

Proof of Theorem 5.1. Let πV = ⊗i∈V πi be the semi-conjugacy map between
the symbolic dynamical system (σt,⊗i∈V ΣA) and (FV ,MV ) (here πi are copies of the
coding map π). Define the measure νV on ΣVA = ⊗i∈V ΣA by the following relation µV =
(hV πV )∗νV . It is easy to see that the following statement holds.

Lemma 1. The measures µV converge in the weak∗ topology to a measure on M if

the measures νV converge in the weak∗ topology to a measure on ΣZ
d

A as V → Zd.
The desired result is now a consequence of Lemma 1 and the following lemma.

Lemma 2. The measures νV converge in the weak∗ topology to a measure on the

(d + 1)-dimensional lattice spin system ΣZ
d

A which is the unique Gibbs state for a Hölder

continuous function. It is also exponentially mixing with respect to the Zd+1-action of the

lattice.

Proof of the lemma. Note that the measure νV is the unique Gibbs state for the
Hölder continuous function

ϕ∗V (ξV ) = − log JacuΦV (hV πV (ξV )) (5.2)

on ΣVA . We express the Jacobian JacuΦV (xV ), xV ∈MV as a product

JacuΦV (xV ) = det(DΦV |Wu
ΦV

(xV )) = det(I + AV (xV ))
( ∏
i∈V

Jacu f(xi)
)
, (5.3)

where I is the identity matrix and AV is a matrix whose entries are submatrices satisfying
some special properties which we specify later.

Let EuΦV (xV ) be the unstable subspace at xV for the map ΦV . One can see that
EuΦV (xV ) is close to the direct product ⊗i∈V Euf (xi). We choose a basis {ui(xi), si(xi), i ∈
V } in the space

⊗i∈V TxiM =
(
⊗i∈V Euf (xi)

)
⊗
(
⊗i∈V Esf (xi)

)
such that ui(xi) and si(xi) are bases in Euf (xi) and Esf (xi) respectively, and we assume
that they depend Hölder continuously on the base point xV . The derivative DΦV (xV ) can
now be written as follows:

DΦV (xV ) =
(

(Duf(xi)) 0
0 (Dsf(xi))

)(
I +

(
auuij (xV ) ausij (xV )
asuij (xV ) assij (xV )

))
(5.4)
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where we arrange the elements of the basis {ui(xi), si(xi), i ∈ V } in an arbitrary linear
order, ui first, followed by si. Since Φ is C1-close to F and is short ranged the submatrices
(a∗ij(xV )) satisfy the following conditions (we use ∗ to denote one of the symbols uu, us, su,
or ss):

(1) ‖(a∗ij(xV ))‖ ≤ εe−β|i−j|, where |i − j| is the distance between the lattice sites i
and j and constants ε > 0 and β > 0 are independent of the volume V as well as of the
base point xV ;

(2) each submatrix a∗ij(xV ) depends Hölder continuously on xV :

‖a∗ij(xV )− a∗ij(yV )‖ ≤ εe−β|i−k|dδ(xk, yk), (5.5)

where xV = (xi) and yV = (yi) are such that xi = yi for i 6= k (recall that d is the
Riemannian distance on M).

The constant ε > 0 can be chosen arbitrarily small as the C1-distance between Φ and
F goes to zero. The constant δ is independent of the volume V and the base point xV .

Using the graph transform technique one can identify the unstable subspace EuΦV (xV )
with the graph of a linear map HxV : ⊗i∈V Euf (xi)→ ⊗i∈V Esf (xi), i.e.,

EuΦV (xV ) = (⊗i∈VEuf (xi), HxV ⊗i∈V Euf (xi)). (5.6)

The linear map HxV has a unique matrix representation (cusij ) in the basis {ui(xi), si(xi)},

HxV ui(xi) =
∑
j

cusij sj(xj), (5.7)

where each submatrix cusij satisfies conditions similar to Conditions (1) and (2):
(3) ‖cusij ‖ ≤ εe−β|i−j|;
(4) ‖cusij (xV ) − cusij (yV )‖ ≤ εe−β|i−k|dδ(xk, yk), where xV = (xi) and yV = (yi) are such

that xi = yi for i 6= k.
To prove Condition (3) one can use the graph transform technique in the form de-

scribed in [JLP] and combine it with the fact that the linear map HxV is short ranged. Con-
dition (4) follows from the fact that distributions EuΦV (xV ), ⊗i∈V Euf (xi), and ⊗i∈VEsf (xi)
depend Hölder continuously over the base point xV .

Moreover, the entries cusij satisfy the following crucial condition which allows one to
pass from a finite volume to a bigger one:
(5) ‖cusij (xV ) − cusij (yV ′)‖ ≤ εe−βd(i,∂V ) for any finite volume V ⊂ V ′ and any point yV ′

satisfying yV ′ |V = xV .
In order to prove (5), we apply the graph transform technique to the map ΦV ′ on

MV ′ with the ρq-metric restricted to MV ′ . Note that the ρq-distance between ΦV ′ and
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ΦV ⊗FV ′\V is proportional to εe−βd(V ). Therefore, using results in [PS] we obtain that the
ρq-distance between subspaces Eu,sΦ′

V
(x′V ) and Eu,sΦV

(xV )⊗i∈V \V Eu,sf (yi) is also proportional

to εe−βd(V ). Hence, so is the ρq-distance between linear operators HxV ′ and HxV . This
implies (5).

We choose {ũi} = {ui +Hui} = {ui+
∑

j cusij sj} as a basis in EuΦV (xV ) and we write
the derivative DΦ|EuΦV (xV ) in the new basis {ũi, si, i ∈ V } into the following matrix form:

DΦ|EuΦV (xV ) = (Duf(xi))(I + auuij (xV )) + (ausij (xV ))(cusij (xV )).

The latter expression can be rewritten in the form

(Duf(xi))(I + (aij(xV ))),

where AV (xv) = (aij(xV )) is the matrix whose submatrix entries aij(xV ) satisfy the
following conditions (which follow immediately from (1)–(5)):

(6) ‖aij‖ ≤ εe−β|i−j|;
(7) ‖aij(xV ) − aij(yV )‖ ≤ εe−β|i−k|dδ(xk, yk), where xV = (xi) and yV = (yi) are

such that xi = yi for i 6= k.
(8) ‖aij(xV )− aij(yV ′)‖ ≤ εe−βd(i,∂V ) for any V ⊂ V ′.
Next, we apply the well-known formula:

det(exp(B)) = exp(trace(B)).

In our case, exp(B) = I + AV (xV ) and hence,

det(I +AV ) = exp(trace(ln(I + AV )) = exp(−
∑
i∈V

wV i), (5.8)

where

wV i(xV ) =
∞∑
n=1

(−1)n

n
trace(anii(xV )) (5.9)

and anii(xV ) are submatrices on the main diagonal of (AV )n.

Sublemma. The functions wV i(xV ) satisfy:
(1) |wV i(xV )| ≤ Cε;
(2) |wV i(xV )−wV i(yV )| ≤ Cε exp(−β2 |i−k|)dδ(xk, yk), where xV = (xi) and yV = (yi)

are such that xi = yi for i 6= k;
(3) if V ⊂ V ′ then |wV i(x)− wV ′i(y)| ≤ Cε exp(−β

2
d(i, ∂V ));

(4) there exists the limit ϕi = limV→Zd wV i(x) which is translation invariant in the
following sense: ϕi(x̄) = ψ(σisx̄). Moreover, ψ is Hölder continuous with Hölder constant
which goes to zero as ε→ 0.
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Proof of the sublemma. The proof is a straightforward calculation. We first show
the following inequality,

‖anij‖ ≤ (Cε)ne−β̃|i−j|, (5.10)

where β̃ is a number smaller than β and C = C(β̃) is a constant.
We use the induction. For n = 2 we have

‖a2
ij‖ = ‖

∑
l∈V

ailalj‖ ≤
∑
l∈V

ε2 exp(−β(|i− l|+ |l − j|))

≤
∑
l∈V

ε2 exp(−β̃(|i− l|+ |l − j|)− (β − β̃)|l − j|)

≤ ε2e−β̃|i−j|
∑
l∈V

exp(−(β − β̃)|l − j|) ≤ Cε2e−β̃|i−j|, (5.11)

where C = C(β̃) =
∑
l∈Zd exp(−(β − β̃)|l|).

Let us assume that ‖an−1
ij ‖ ≤ Cn−2εn−1 exp(−β̃|i− j|). Then

‖anij‖ = ‖
∑
l∈V

an−1
il alj‖ ≤

∑
l∈V

Cn−2εn exp(−β̃(|i− l|+ |l − j|)− (β − β̃)|l − j|)

≤ Cn−1εn exp(−β̃|i− j|). (5.12)

Therefore, Statement 1 follows directly from the definition of wV i.
To prove Statement 2 we need only to show the following inequality:

‖anij(xV )− anij(yV )‖ ≤ (Cε)ne−
β
2 |i−k|dδ(xk, yk),

where xV = (xi) and yV = (yi) are such that xi = yi for i 6= k. We again use the induction.
For n = 2,

‖a2
ij(xV )− a2

ij(yV )‖ =
∑
l∈V

ail(xV )alj(xV )− ail(yV )alj(yV )

=
∑
l∈V

ail(xV )[alj(xV )− alj(yV )] + alj(yV )[ail(xV )− ail(yV )]

≤
∑
l∈V

ε2[exp(−β(|l − k|+ |i− l|)) + exp(−β(|l − j|+ |i− k|))]dδ(xk, yk)

≤ Cε2 exp(−β
2
|i− k|)dδ(xk, yk) (5.13)

where C = 2
∑
l∈Zd exp(−β2 |l|).
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For n > 2 we argue similarly using Statement (1):

‖anij(xV )− anij(yV )‖ =
∑
l∈V

an−1
il (xV )alj(xV )− an−1

il (yV )alj(yV )

=
∑
l∈V

an−1
il (xV )[alj(xV )− alj(yV )] + alj(yV )[an−1

il (xV )− an−1
il (yV )]

≤
∑
l∈V

(Cε)n−1ε exp(−β
2
|i− l| − β|l − k| − β|l − j| − β

2
|i− k|)dδ(xk, yk)

≤ (Cε)n exp(−β
2
|i− k|)dδ(xk, yk). (5.14)

Statement 3 follows from Condition (8) while Statement 4 is a consequence of Statements
2 and 3 and our assumption that the map Φ is spatial translation invariant. �

We proceed with the proof of the theorem. Let V be a d-dimensional cube centered
at the origin. Choose any finite volume V0 ⊂ V and numbers 0 < m < n. We have that

νV (ξ(V0,m)) = lim
n→∞

νV (ξ(V0,m)|η∗(̂V,n)
).

In order to obtain the desired result we shall show that the one-dimensional Gibbs distribu-
tions νV (ξ(V,n)|η∗

(̂V,n)
) has a unique thermodynamic limit as V → Zd+1 and n→∞. This

thermodynamic limit is precisely the unique d+ 1-Gibbs state for the potential function

ϕ∗(ξ̄) = (ψ − log Jacu f)(hπ̄(ξ̄)) (5.15)

on ΣZ
d

A , where ψ is defined in Statement 4 of Sublemma.
Note that the function ϕ∗ is the sum of two functions, ϕ∗ = ϕ∗0 + ϕ∗1, where

ϕ∗0 = − log Jacu f ◦ π̄

and
ϕ∗1 = (ψ − log Jacu f) ◦ h ◦ π̄ + log Jacu f ◦ π̄.

By Statements 1, 2, and 4 of Sublemma and Theorem 1.1 the function ϕ∗1 is Hölder con-
tinuous with a small Hölder constant in the metric ρq provided ε is sufficiently small. The
function ϕ∗0 is also Hölder continuous and depends only on the coordinate ξ0. Therefore,
by Theorem 3.7 the Gibbs state corresponding to this function is unique.

Since the measure νV is the unique Gibbs state for the Hölder continuous function
ϕ∗V (ξV ) on ΣVA (see (5.2)) it satisfies the following equation [Ru]: given a configuration
η∗ ∈ ΣZ

d

A ,

νV (ξ(V,n)|η∗
(̂V,n)

) =
exp

∑
k∈Z ϕ

∗
V (σkt (ξ(V,n) + η∗

(̂V,n)
))∑

η(V,n)
exp

∑
k∈Z ϕ

∗
V (σkt (η(V,n) + η∗

(̂V,n)
)
, (5.16)
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where ξ(V,n) is a configuration over the finite volume (V, n) = V × [−n, n] ⊂ Zd+1, and

η∗
(̂V,n)

is the restriction of the configuration η∗ to (̂V, n) = Zd+1\V × [−n, n].

Using (5.3) and (5.8) we rewrite (5.16) in the following way

νV (ξ(V,n)|η∗
(̂V,n)

) =
exp

∑
k∈Z ϕ

∗
V (hV πV σkt (ξ(V,n) + η∗

(̂V,n)
))∑

η(V,n)
exp

∑
k∈Z ϕ

∗
V (hV πV σkt (η(V,n) + η∗

(̂V,n)
))

=
exp

∑
k∈Z

∑
i∈V (wV i − log Jacu f)(hV πV σkt (ξ(V,n) + η∗

(̂V,n)
))∑

η(V,n)
exp

∑
k∈Z

∑
i∈V (wV i − log Jacu f)(hV πV σkt (η(V,n) + η∗

(̂V,n)
))
.

The rest of the proof is split into the following steps.

Step 1: We wish to rewrite the last expression for the conditional distributions
νV (ξ(V,n)|η∗

(̂V,n)
) in terms of potentials (see Section 3). The potential U corresponding to

the function (ψ − log Jacu f)(hπ̄) can be constructed using (3.9)–(3.12).
Given a finite volume V and i ∈ V , consider the function (wV i − log Jacu f)(hV πV ).

In order to construct the potential UV i corresponding to this function we again follow
the procedure described in Section 3 and use (wV i − log Jacu f)(hV πV ) for each Zd+1-
cube centered at (i, k) ∈ V × Z. Not that the resulting potential is invariant under time
translations but may not be invariant under spatial translations.

Step 2: We now rewrite the distributions νV (ξ(V,n)|η∗
(̂V,n)

) in terms of potentials UV i:

νV (ξ(V,n)|η∗(̂V,n)
) =

exp
∑
Q∩(V,n)6=∅ U

V i
Q (ξ(V,n) + η∗

(̂V,n)
)∑

η(V,n)
exp

∑
Q∩(V,n)6=∅ U

V i
Q (η(V,n) + η∗

(̂V,n)
)
. (5.17)

Step 3: By Statement 3 of Sublemma wV i → ϕi = ψ(σis) exponentially fast. Using
the fact that hV → h exponentially fast in the ρq-metric (see Theorem 4.4) we obtain that
for any Zd+1-cube Q centered at (i, k) ∈ V × Z,

|UV i(ξ(Q))− U(ξ(Q))| ≤ Cεe−βd(i,∂V ). (5.18)

By Statement 2 of Sublemma both potentials UV i|Q and U |Q go to zero exponentially fast
as the side length of Q increases.

Step 4: Take a larger volume (V ′, n′) ⊂ Zd+1 such that

(V, n) ⊂ (V ′, n′)/2 = (V ′/2, n′/2)
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where V ′/2 is the d-dimensional cube centered at the origin of the side length equal to 1/2 of
the side length of V . We follow the approach elaborated by Ruelle in [Ru] (see Section 1.7).
(For the reader’s convenience we provide the correspondence between Ruelle’s notations
and ours: M = (V ′, n′), Λ = (V, n), X = Q, and Φ = UV i, U).

We first decompose the numerator of (5.17) (for volume (V ′, n′)) into two terms.

exp
∑

Q∩(V ′,n′)6=∅
UV iQ (ξ(V,n) + η∗

(̂V,n)
) = exp

(
H(V,n)(ξ(V,n)) +B(V ′,n′)(ξ(V ′,n′))

)
,

where the main term H(V,n)(ξ(V,n)), the Hamiltonian in volume (V, n), is given by

H(V,n)(ξ(V,n)) =
∑

Q⊂(V,n)

UQ(ξ(V,n) + η∗
(̂V,n)

),

while the boundary term is given as follows:

B(V ′,n′)(ξ(V ′,n′)) =
∑

Q∩(V ′,n′)6=∅
UV

′i
Q (ξ(V ′,n′) + η∗̂(V ′,n′)

)− UQ(ξ(V ′,n′) + η∗̂(V ′,n′)
)

+
∑

Q∩(V ′,n′) 6=∅
Q∩ ̂(V ′,n′) 6=∅

UQ(ξ(V ′,n′) + η∗
M̂

).

By (5.17) and results in [Ru] (see Section 1.6) we now only need to verify that the boundary
term satisfies the conditions stated in Section 1.7 of [Ru].

We first splitB(V ′,n′)(ξ(V ′,n′)) into two termsB(V ′,n′)(ξ(V ′,n′)) = B′(η)+B′′(ξ(V,n)+η),
where ξ(V ′,n′) = ξ(V,n)+η and B′(η) collects the terms depending only on η ∈ Ω(V ′,n′)\(V,n),
i.e.,

B′(η) =
∑

X∩(V ′,n′) 6=∅
Q∩(V,n)=∅

(
UV

′i
Q (ξ(V ′,n′) + η∗̂(V ′,n′)

)− UQ(ξ(V ′,n′) + η∗̂(V ′,n′)
)
)

+
∑
Q

∗UQ(ξ(V ′,n′) + η∗̂(V ′,n′)
)

while the second term is given as follows:

B′′(ξΛ + η) =
∑

Q∩(V,n)6=∅

(
UV

′i
Q (ξ(V ′,n′) + η∗̂(V ′,n′)

)− UQ(ξ(V ′,n′) + η∗̂(V ′,n′)
)
)

+
∑
Q

∗∗UQ(ξ(V ′,n′) + η∗̂(V ′,n′)
).
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Here
∑∗

Q runs over {Q : Q ∩ (V ′, n′) 6= ∅, Q ∩ ̂(V ′, n′) 6= ∅, Q ∩ Λ = ∅} and
∑∗∗
Q runs over

{Q : Q ∩ (V ′, n′) 6= ∅, Q ∩ ̂(V ′, n′) 6= ∅, Q ∩ Λ 6= ∅}.
According to [Ru] in order to show that the thermodynamic limit of νV (ξ(V,n)|η∗

(̂V,n)
)

goes to a Zd+1-Gibbs state of U , we only need to check that for any fixed (V, n), B′′(ξ(V,n)+
η) as a function of η ∈ Ω(V ′,n′)\(V,n) goes to zero uniformly in Ω(V ′,n′)\(V,n) as (V ′, n′)→
Zd+1. The second sum in B′′,

∑∗∗
Q , goes to zero uniformly since the potential U de-

cays exponentially. The first sum in B′′ can be further decomposed into two sums. Let
(i(Q), k(Q)) ∈ Zd+1 denote the center of Q. We may assume that (V ′, n′) is a Zd+1-cube
with equal sides. Then,∑

Q∩(V,n)6=∅
UV

′i
Q (ξ(V ′,n′) + η∗̂(V ′,n′)

)− UQ(ξ(V ′,n′) + η∗̂(V ′,n′)
)

= (
∑

i(Q)∈(V ′,n′)/2
Q∩(V,n) 6=∅

+
∑

i(Q) 6∈(V ′,n′)/2
Q∩(V,n) 6=∅

)UV
′i

Q (ξ(V ′,n′) + η∗̂(V ′,n′)
)− UQ(ξ(V ′,n′) + η∗̂(V ′,n′)

).

By (5.18) we have

|
∑

i(Q)∈(V ′,n′)/2
Q∩(V,n) 6=∅

UV
′i

Q (ξ(V ′,n′) + η∗̂(V ′,n′)
)− UQ(ξ(V ′,n′) + η∗̂(V ′,n′)

)|

≤ C′ε|(V, n)||(V ′, n′)/2|e−βd((V ′,n′)),

where |(V, n)| and |(V ′, n′)/2| are the cardinalities of the corresponding sets and d((V ′, n′))
is the side length of (V ′, n′). The sum∑

i(Q) 6∈(V ′,n′)/2
Q∩(V,n) 6=∅

UV
′i

Q (ξ(V ′,n′) + η∗̂(V ′,n′)
)− UQ(ξ(V ′,n′) + η∗̂(V ′,n′)

)

also goes to zero uniformly as d((V ′, n′))→∞ since both potentials UV
′i and U go to zero

exponentially fast as d((V ′, n′))→∞.
This completes the proof of the theorem. �

Appendix: Spin Lattice Systems

1. Abstract Polymer Expansion Theorem.

Consider a finite or countable set Θ. Its elements are called (abstract) contours
and denoted by θ, θ′, etc. Fix some reflexive and symmetric relation on Θ × Θ. A pair
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θ, θ′ ∈ Θ×Θ is called incompatible (θ 6∼ θ′) if it belongs to the given relation. Otherwise,
this pair is called compatible (θ ∼ θ′). A collection {θj} is called a compatible collection
of contours if any two of its elements are compatible.

A statistical weight w is a complex function on the set of contours. For any finite
subset Λ ⊆ Θ an abstract partition function is defined as

Z(Λ) =
∑
{θj}⊆Λ

∏
j

w(θj), (A1.1)

where the sum is extended to all compatible collections of contours θi ∈ Λ. The empty
collection is compatible by definition and it is included in Z(Λ) with statistical weight 1.

A polymer ℘ = [θαii ] is an (unordered) finite collection of different contours θi ∈ Θ
with positive integer multiplicity αi. For every pair θ′, θ′′ ∈ ℘ there exists a sequence
θ′ = θi1 , θi2 , . . . , θis = θ′′ ∈ ℘ with θij 6∼ θij+1 , j = 1, 2, . . . , s− 1. The notation ℘ ⊆ Λ
means that θi ∈ Λ for every θi ∈ ℘.

With every polymer ℘ we associate an (abstract) graph Γ(℘) which consists of
∑
i αi

vertices labeled by the contours from ℘ and edges joining every two vertices labeled by
incompatible contours. It follows from the definition of Γ(℘) that it is connected and we
denote by r(℘) the quantity

r(℘) =
∏
i

(αi!)−1
∑

Γ′⊂Γ(℘)

(−1)|Γ
′|, (A1.2)

where the sum is taken over all connected subgraphs Γ′ of Γ(℘) containing all of
∑
i αi

vertices and |Γ′| denotes the number of edges in Γ′. For any θ ∈ ℘ we denote by α(θ, ℘)
the multiplicity of θ in the polymer ℘.

The polymer expansion theorem below is a modification of results of [Se] and [KP]
proven in [MSu] (see also [D2] for closely related results).

Abstract Polymer Expansion Theorem.

Suppose that there exists a function a(θ) : Θ 7→ R+ such that for any contour θ∑
θ′: θ′ 6∼θ

|w(θ′)|ea(θ′) ≤ a(θ). (A1.3)

Then, for any finite Λ,

logZ(Λ) =
∑
℘⊆Λ

w(℘), (A1.4)
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where the statistical weight of a polymer ℘ = [θαii ] equals to

w(℘) = r(℘)
∏
i

w(θi)αi . (A1.5)

Moreover, the series (A1.4) converges absolutely in view of the estimate∑
℘: ℘3θ

α(θ, ℘)|w(℘)| ≤ |w(θ)|ea(θ), (A1.6)

which holds true for any contour θ.

2. Gibbs States.

Let S = {1, 2, · · · , p} and A be a p× p transfer matrix with entries aij equal to either
0 or 1. Assume that A is transitive, i.e., there is a constant n0 such that every entry of An0

is positive. For any volume V ⊆ Z2 a configuration in V is an element η(V ) of SV with the
value ηx(V ) at point x = (i, j) ∈ V . A configuration η is called admissible if aηx1ηx2

= 1
for any pair x1 = (i, j), x2 = (i, j + 1) ∈ V . For the family of configurations η(Vi) in
mutually disjoint volumes Vi we denote by

∑
i η(Vi) the corresponding configuration in

∪iVi provided such a configuration exists (i.e., is admissible). When V = Z2 we have the
configuration space ΣZA =

⊗
ZΣA, where ΣA is the subshift generated by the matrix A.

Let Q be a square in Z2 and l(Q) its side length. Consider a potential U satisfying

0 ≤ U(η(Q)) ≤ exp [−l(Q)] (A2.1)

for every square Q ⊂ Z2.
Take a finite volume V and fix a configuration η′ over V̂ = Z2 \ V . The configuration

η′(V̂ ) is called a boundary condition.
Conditional Gibbs distributions over V under the boundary condition η′(V̂ ) are defined

by

µ
V,η′

(η(V )) =
exp

[
H(η(V )|η′(V̂ ))

]
Ξ(V |η′(V̂ ))

. (A2.2)

Here η(V ) is a configuration over V such that η(V ) + η′(V̂ ) is also a configuration in Z2,

H(η(V )|η′(V̂ )) = −
∑
Q⊆V

U(η(Q))−
∑

Q∩V 6=∅, Q∩V̂ 6=∅

U
(
η(Q ∩ V ) + η′(Q ∩ V̂ )

)
(A2.3)

is the conditional Hamiltonian, and the denominator in (A2.2) is the partition function for
the potential U in the volume V with the boundary condition η′(V̂ ):

Ξ(V |η′(V̂ )) =
∑
η(V )

exp
[
−βH(η(V )|η′(V̂ ))

]
. (A2.4).
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3. Contour Representation of Partition Functions.

We shall show that the partition function Ξ(V |η′(V̂ )) can be represented in the form of
an abstract partition function (A1.1). It has a polymer expansion (A1.4) if β is sufficiently
small. We shall describe the terms in (A1.1) in our specific context.

We first introduce a new potential which is equivalent to the original one (A2.1)–
(A2.4). This means that the new potential defines the same Gibbs distributions over any
finite volume under a fixed boundary condition.

Let b(Q) be the leftmost lower corner of Q. Take an integer L ≥ n0 and consider a
rectangle P of size n(P )×Ln(P ) such that its leftmost lower corner b(P ) = (b1(P ), b2(P ))
has b2(P ) = rL, where r and n(P ) are integers. We say that the square Q with b(Q) =
(b1(Q), b2(Q)) is associated with the rectangle P if b1(Q) = b1(P ), L[b2(Q)/L] = b2(P ),
l(Q) = n(P ) and hence Q ⊆ P (here [ · ] denotes the integer part). For any rectangle P
we define

U(η(P )) =
∑
Q

U(η(Q)), (A3.1)

where the sum is taken over all squares Q associated with the rectangle P . Clearly,

0 ≤ U(η(P )) ≤ Lexp [−n(P )] (A3.2)

and absorbing L in β one can assume that the potential is defined on rectangles P (instead
of squares Q) and satisfies

0 ≤ U(η(P )) ≤ exp [−n(P )] . (A3.3)

Set ∂IV = {x ∈ V | dist (x, V̂ ) = 1}, ∂EV = {x ∈ V̂ | dist (x, V ) = 1}. We call ∂IV and
∂EV an internal and an external boundaries of V respectively. Observe that every finite
volume V can be uniquely partitioned into vertical segments Vn with each segment being a
connected component of the intersection of V and some vertical line. We denote by a(Vn)
and b(Vn) the points of ∂EV adjacent to Vn from above and from below, respectively. The
collection of such elements will be denoted by a(V ) and b(V ). In addition, we restrict our
considerations to the volumes with

L[a(Vn)/L] = a(Vn) and L[b(Vn) + 1/L]− 1 = b(Vn). (A3.4)

As we still allow arbitrary boundary conditions it is sufficient to prove the uniqueness of
the limiting Gibbs state when the limit is taken over volumes of the special shape described
above.

3.1. Definition of contours.
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A precontour γ = {Pj} is a family of rectangles which satisfy the following conditions:
(1) γ̄ = ∪jPj is a connected subset of Z2;
(2) every Pj contains a point which does not belong to any other rectangle of γ.

Consider a finite family of rectangles Γ = {Pi} such that Γ̄ = ∪iPi is a connected
subset of Z2. This family of rectangles γ(Γ) will be a precontour by our definition. It is
called the precontour of Γ. We describe an algorithm which produces a unique minimal
covering γ(Γ) of Γ̄.

(i) Fix the leftmost lower point in Γ̄. Among all rectangles of Γ that begin at this
point choose the rectangle Pi1 with the maximal linear size n(Pi1) and include it in γ(Γ).

(ii) Suppose that the rectangles Pi1 , . . . , Pik are already selected to γ(Γ) during the
previous steps of the algorithm. Fix the leftmost lower point x ∈ Γ̄ \ (∪kj=1Pij ). Consider
all rectangles of Γ covering x. Among them choose the rectangles with the maximal right
upper corner (here maximal means rightmost upper). From this family of rectangles include
in γ(Γ) the rectangle Pik+1 which has the maximal linear size.

(iii) Repeat step (ii) until Γ̄ will be totally covered, i.e. Γ̄ = ∪jPij .

We say that a rectangle P is compatible with precontour γ = {Pj} and denote it by
P ≺ γ if for Γ = {Pj} ∪ {P} one has γ(Γ) = γ. Obviously, any P ≺ γ belongs to γ̄ and
any P embedded into some Pj ∈ γ is compatible with γ. It is also clear that some of the
rectangles P ⊆ γ̄ can be incompatible with γ.

A collection of precontours {γi} is called a compatible if for any γi1 , γi2 ∈ {γi} either
dist (γ̄i1 , γ̄i2) > 1 or γ̄i1 ⊆ γ̄i2 \ ∂I γ̄i2 . For V ⊂ Z2, the inclusion Γ ⊂ V means that every
rectangle of Γ is contained in V . Furthermore, Γ ∩ V 6= ∅ mean that P ∩ V 6= ∅ for every
P ⊂ Γ. A collection of precontours {Γi} ∩ V 6= ∅ if Γi ∩ V 6= ∅ for each i.

A contour is a triple Ω =
(
{γi}, {τj}, η

)
, where

(i) either {γi} ∩ V 6= ∅ is a compatible collection of precontours or {Γi} is an empty
set;

(ii) {τj} ⊆ V \ (∪i∂I γ̄i) is a collection of mutually disjoint finite vertical segments
with a(τj), b(τj) ∈ ∪i(∂I γ̄i ∩ V ) ∪ ∂EV ;

(iii) η is a configuration in ∪i(∂I γ̄i ∩ V );
(iv) either {γi} is non empty and for every τj at least one of its ends (a(τj) or b(τj))

belongs to ∪i(∂I γ̄i ∩ V ) or {γi} is empty and {τj} consists of a single segment τ with
a(τ), b(τ) ∈ ∂EV ;

(v) for every pair γi′ and γi′′ there exists a sequence γi′ = γi1 , τj1 , . . . , γis , τjs , γis+1 =
γi′′ such that for any 1 ≤ k ≤ s either a(τjk) ∈ ∂I γ̄ik and b(τjk) ∈ ∂I γ̄ik+1 or b(τjk) ∈ ∂I γ̄ik
and a(τjk) ∈ ∂I γ̄ik+1 .
The contour clearly depends on V . In the special case when V = Z2 we obtain so called
free contours.
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Given a contour Ω =
(
{γi}, {τj}, η

)
, we set

Ω̄τ = ∪jτj, Ω̄γ = ∪iγ̄i, Ω̄ = Ω̄τ ∪ Ω̄γ , Ω̃ = Ω̄τ ∪ (∪i∂I γ̄i).

A collection {Ωl} is compatible if for any Ωl1 and Ωl2 one has Ω̃l1 ∩ Ω̃l2 = ∅ and the total
collection {γi(Ωl1), γi(Ωl2)} is a compatible collection of precontours.

A contour Ω belongs to the volume V if the corresponding precontours γi ⊆ V and
Ω̄ ⊆ V . A contour Ω has non empty intersection with the volume V if {γi} ∩ V 6= ∅ and
Ω̄τ ⊆ V .

3.2. Definition of statistical weight for contours.

We partition the finite volume V into vertical segments Vn and denote the distance
between a(Vn) and b(Vn) by ||Vn|| = |Vn|+ 1. The number of configurations in V with the
boundary condition η′(V̂ ) can be calculated as

N(V |η′(∂EV )) =
∏
n

N
(
Vn|η′a(Vn), η

′
b(Vn)

)
(A3.5)

where N
(
Vn|η′a(Vn), η

′
b(Vn)

)
is the entry of the matrix A||Vn|| indexed by η′a(Vn), η

′
b(Vn). By

the Perron-Frobenius theorem both matrices A and its adjoint A∗ have a unique maximal
eigenvalue λ > 1. Let e and e∗ be the corresponding eigenvectors with positive components
eη and e∗η. We normalize e and e∗ in such a way that

∑
η eηe

∗
η = 1.

Using the Jordan normal form for matrix A one can show that

N
(
Vn|η′a(Vn), η

′
b(Vn)

)
= eη′

a(Vn)
e∗η′
b(Vn)

λ||Vn||
(

1 + F
(
Vn|η′a(Vn), η

′
b(Vn)

))
(A3.6)

where for some 0 < ρ(A) < 1 and ν(A) > 0∣∣∣F (Vn|η′a(Vn), η
′
b(Vn)

)∣∣∣ ≤ ν(A)ρ(A)||Vn||. (A3.7)

We define
L(V ) = λ−

∑
n
||Vn||, (A3.8)

E(η(∂EV )) =

(∏
n

eηa(Vn)

)−1(∏
n

e∗ηb(Vn)

)−1

,

E∗(η(∂EV )) =

(∏
n

e∗ηa(Vn)

)−1(∏
n

eηb(Vn)

)−1

. (A3.9)

Similarly, we define E(η(∂IV )) and E∗(η(∂IV )) by using the top and bottom elements of
Vn instead of a(Vn) and b(Vn).
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Given a precontour γ and a fixed configuration η(∂I γ̄ ∩ V ), we define a precontour
partition function by

Ξ
(
γ, η(∂I γ̄ ∩ V )

∣∣η′(V̂ )
)

= L
(
(γ̄ \ ∂I γ̄) ∩ V

)
E∗
(
η(∂I γ̄ ∩ V )

)−1
E
(
η′(∂EV ∩ γ̄)

)
×

∑
η
(
(γ̄\∂I γ̄)∩V

) ∏
P∈γ

[U
(
η(P ∩V ) + η′(P ∩ V̂ )

)
− 1]

∏
P≺γ

U
(
η(P ∩V ) + η′(P ∩ V̂ )

)
. (A3.10)

Set

Ξ∗(V |η′(∂EV )) = L(V )E(η′(∂EV ))
∑
η(V )

∏
P : P⊆V

(
1 + U

(
β, η(P )

))
.

The statistical weight of precontour is defined by

W
(
γ, η(∂Iγ̄ ∩ V )

∣∣η′(V̂ )
)

=
Ξ
(
γ, η(∂Iγ̄ ∩ V )

∣∣η′(V̂ )
)

Ξ∗
(
(γ̄ ∩ V ) \ ∂I γ̄

∣∣η(∂I γ̄ ∩ V ) + η′(∂EV ∩ γ̄)
) . (A3.11)

For any contour Ω =
(
{γi}, {τj}, η

)
, the statistical weight is

W (Ω|η′(V̂ )) =
∏
i

W
(
γi, η(∂I γ̄i ∩ V )

∣∣η′(V̂ )
)∏

j

F (τj|η′′a(τj)
, η′′b(τj)), (A3.12)

where η′′ = η′
(
∂EV \

(
∪i γ̄i

))
+
∑
i η
(
∂I γ̄i ∩ V

)
.

4. Polymer Expansion Theorem (see [JM]). Let U(η(P )) be a potential which

is defined on rectangles of size n(P ) × Ln(P ). Assume that U ∈ P(q, ε) satisfies (A3.3).

Then there exists a constant ε0 > 0 such that for any 0 < ε ≤ ε0, any finite volume V

satisfying (A3.4), and arbitrary boundary condition η′(V̂ ) the following equation holds:

L(V )E(η′(∂EV ))Ξ(V |η′(V̂ )) =
∑

{Ωj}∩V 6=∅

∏
j

W (Ωj |η′(V̂ )), (A4.1)

where the partition function Ξ(V |η′(V̂ )) on the left-hand side is defined by (A2.1)–(A2.4)

with U(η(P )) replacing U(η(Q)) and the right-hand side is the abstract partition function

over contours defined in the previous sections. Thus, the partition function has the polymer

expansion

L(V )E(η′(∂EV ))Ξ(V |η′(V̂ )) = exp
( ∑
℘∩Λ 6=∅

w(℘)), (A4.2)

where the statistical weight w(℘) is defined in (A1.5)

For a polymer ℘ = [Ωαii ], ℘̄ = ∪iΩ̄i, a potential U ∈ P(q, ε) satisfying (A3.3), and
every sufficiently small ε the conditional Gibbs distributions (see (A2.2)) can be computed
by the following formula

µ
V,η′

(ξ(B)) =

42



N(B) exp

∑
P⊆B

U(η(P )) +
∑

℘:℘∩V \B 6=∅
w(℘|ξ(B) + η′(V̂ ))−

∑
℘:℘∩V 6=∅

w(℘|η′(V̂ ))

 ,
(A4.3)

where P is a rectangle, B ⊂ V ⊂ P are finite volumes (V satisfies (A3.4)) and

N(B) =
L(B)

E∗(ξ(∂IB))
(A4.4)

is the normalizing factor (recall that L(B) and E∗(ξ(∂IB)) are defined by (A3.8)).
One can show that the infinite sums on the right-hand side in the above formula are

convergent uniformly for all B in Z2 and obtain an explicit formula for the Gibbs state in
terms of the potential U independent of the boundary condition η′:

µ(ξ(B)) =

N(B) exp

∑
P⊆B

U(ξ(P )) +
∑

℘: dist(℘̄,B)≤1

dist(℘̄,B̂)=0

w(℘|ξ(B))−
∑

℘: dist(℘̄,B)≤1

w(℘)

 . (A4.5)

43



References

[Bo] R. Bowen, Equilibrium State and the Ergodic Theory of Anosov Diffeomorphisms
Lecture Notes in Mathematics 470 (1975) Springer-Verlag, Berlin

[BK1] J. Bricmont and A. Kupiainen, Coupled Analytic Maps Nonlinearity, 8 (1995) 379–396
[BK2] J. Bricmont and A. Kupiainen, High Temperature Expansions and Dynamical Systems

Comm. Math. Phys., 178 (1996) 703–732
[BK3] J. Bricmont and A. Kupiainen, Infinite dimensional SRB-measures

mp arc Preprint, 1995
[Bu] L. Bunimovich, Coupled map lattices: one step forward and two steps back Physica

D 86 (1995) 248–255
[BuSi] L. Bunimovich and Ya.G. Sinai, Space-time Chaos in Coupled Map Lattices Nonlin-

earity , 1 (1988) 491–516
[BuSt] R. Burton and J. Steif, Non-uniqueness of Measures of Maximal Entropy for Subshifts

of Finite Type Ergod. Theor. & Dyn. Systems, 14:2 (1994) 213–235
[D1] R. Dobrushin, The Problem of Uniqueness of a Gibbsian Random Field and the Prob-

lem of Phase Transitions Funct. Anal. Appl., 2 (1968) 302–312
[D2] R. Dobrushin, Estimates of Semiinvariants for the Ising Model at Low Temperatures,

Preprint ESI 125, 1994
[DM1] R. Dobrushin and M. Martirosian, Nonfinite Perturbations of the Random Gibbs

Fields Theor. Math. Phys., 74 (1988) 10–20
[DM2] R. Dobrushin and M. Martirosian, Possibility of High-temperature Phase Transitions

Due to the Many-particle Nature of the Potential Theor. Math. Phys., 74 (1988)
443–448

[Geo] H. Georgii, Gibbs Measures and Phase Transitions, Walter de Gruyter, Berlin, 1988
[Gro] L. Gross, Decay of correlations in classical lattice models at high temperature Comm.

Math. Phys., 68 (1979) 9–27
[J1] M. Jiang, Equilibrium states for lattice models of hyperbolic type Nonlinearity 8:5

(1994) 631–659
[J2] M. Jiang, Ergodic Properties of Coupled Map Lattices of hyperbolic type, Penn State

University Dissertation, 1995
[J3] M. Jiang, Entropy Formula for Coupled Map Lattices In preparation , 1997

[JLP] M. Jiang, R. de la Llave and Ya. Pesin, On the integrability of intermediate distribu-
tions for Anosov diffeomorphisms, Ergod. Th. & Dynam. Sys. 15:2 (1995) 17–331

[JM] M. Jiang and A. Mazel, Uniqueness of Gibbs states and Exponential Decay of Corre-
lation for Some Lattice Models Journal of Statistical Physics, 82:3-4 (1995) 797–821

[Ka] K. Kaneko, editor, Theory and Applications of Coupled Map Lattices, Wiley, New
York, 1993

44



[KH] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Sys-
tems, Cambridge University Press, 1994

[KK] G. Keller and M. Künzle, Transfer Operators for Coupled Map Lattices, Ergod. Theor.
& Dyn. Systems 12 (1992) 297–318

[KP] R.Kotecky and D. Preiss, Cluster Expansion for Abstract Polymer Models, Comm.
Math. Phys., 103 (1996) 491–498

[Lang] S. Lang, Differential Manifold Springer-Verlag, New York, 1985
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