Projects “Automorphic forms and applications”

Project 1. Give detailed proofs for Theorem 3 and three other results stated in class without proof.

Project 2. State and prove a selection of analytic properties of the Bessel function $J_k(x)$, in particular bounds, asymptotic formulae (ideally uniformly in k), integral representations etc.

Project 3. We showed in class
\[
\sum_{n \leq X} a(n)e(\alpha n) \ll X^{k/2}\log X
\]
for Fourier coefficients of a weight k cusp form and any $\alpha \in \mathbb{R}$. Now assume that $\alpha = a/q$ is a rational number in lowest terms and f has level 1, i.e., is a cusp form of $SL_2(\mathbb{Z})$. Use the transformation properties of the cusp form f (in particular by the matrix $\begin{pmatrix} \bar{a} & (1 - a\bar{a})/q \\ -q & a \end{pmatrix}$ for a fixed representative \bar{a}) to prove stronger estimates (ideally uniformly in q for q not too big in terms of X).

Project 4. [Character sums:] a) While Kloosterman sums to prime modulus cannot be evaluated (in general), a twisted version is easier to handle: Let p be an odd prime, $m,n \in \mathbb{Z}$ with n coprime to p. Define the Salié sum
\[
T(n,m;p) := \sum_{d|p} \left(\frac{d}{p} \right) e\left(\frac{m\bar{d} + nd}{p}\right).
\]
These sums play a crucial role in the theory of half-integral weight modular forms. Show
\[
T(n,m;p) = \left(\frac{n}{p} \right) \varepsilon_p \sqrt{p} \sum_{y^2 \equiv nm (p)} e\left(\frac{2y}{p}\right)
\]
where as usual $\varepsilon_p = 1$ if $p \equiv 1 \pmod{4}$ and $\varepsilon_p = i$ otherwise.

b) Fix $r,n,k \in \mathbb{N}$, $r \geq 2$. Let p be an odd prime, $q = p^r$. As usual let $\tau(\chi)$ denote the Gauß sum associated to a character χ mod q. Show
\[
\sum_{\chi (q)} \bar{\chi}(k)\tau(\chi)^n \ll q^{(n+1)/2}.
\]
Conclude that
\[
\sum_{\chi (q)} \tau(\chi)^n \ll q^{(n+1)/2}
\]
where the sum is only over primitive characters.

Project 5. Come up with your own interesting question and solve it.