next up previous contents index
Next: Index Up: Logic: The Bridge to Previous: The induction axiom

to3em

References

1
J.W.R. Dedekind, Was sind und was sollen die zahlen, Brunswick, 1888.

2
Edward A. Feigenbaum and Pamela McCorduck, The fifth generation, Addison-Wesley Pub. Co., Menlo Park, Calif., 1983.

3
Kurt Gödel, Die vollstandigkeit der axiome des logischen functionenkalkuls, Monatsh. Math. 7 (1930), 173-198.

4
Herman H. Goldstine, The computer from pascal to von neuman, Princeton University Press, Princeton, N.J., 1972.

5
David Hilbert, Grundlagen der geometry, Leipzig, 1899.

6
Morris Kline, Mathematics: The loss of certainty, Oxford University Press, Oxford, 1980.

7
William Kneale and Martha Kneale, The development of logic, Oxford University Press, London, 1962.

8
Henri Lebesgue, Sur les fonctions représentable analytiquement, Journal de Math tex2html_wrap_inline3014 serie 1 (1905), 139-216.

9
Benson Mates, Elementary logic, Oxford University Press, New York, 1965.

10
G. Peano, Arithmetices principia nova methodo exposita, Rome, 1889.

11
, Notation de logique mathématique, Turin, 1894.

12
J. Robinson, Definability and decision problems in arithmetic, J. Symbolic Logic 14 (1949), 98-114.

13
Th. Skolem, Uber die nicht-charakterisierbarkeit der zahlenreihe mittels endlich oder abzahlbar unendlich vieler aussagen mit ausschliesslich zahlvariablen, Fundamenta Mathematicae 23 (1934), 150-161.

14
, Peano's axioms and models of arithmetic, Mathematical Interpretation of Formal Systems, North Holland, 1955.

15
Daniel Solow, How to read and do proofs, 2nd ed., John Wiley and Sons Inc., New York, 1990.



Richard Mansfield
Wed Oct 21 14:09:45 EDT 1998