Next: Index
Up: Logic: The Bridge to
Previous: The induction axiom
to3em
References
- 1
-
J.W.R. Dedekind, Was sind und was sollen die zahlen, Brunswick, 1888.
- 2
-
Edward A. Feigenbaum and Pamela McCorduck, The fifth generation,
Addison-Wesley Pub. Co., Menlo Park, Calif., 1983.
- 3
-
Kurt Gödel, Die vollstandigkeit der axiome des logischen
functionenkalkuls, Monatsh. Math. 7 (1930), 173-198.
- 4
-
Herman H. Goldstine, The computer from pascal to von
neuman, Princeton University Press, Princeton, N.J., 1972.
- 5
-
David Hilbert, Grundlagen der geometry, Leipzig, 1899.
- 6
-
Morris Kline, Mathematics: The loss of certainty, Oxford University
Press, Oxford, 1980.
- 7
-
William Kneale and Martha Kneale, The development of logic, Oxford
University Press, London, 1962.
- 8
-
Henri Lebesgue, Sur les fonctions représentable analytiquement,
Journal de Math
serie 1 (1905), 139-216.
- 9
-
Benson Mates, Elementary logic, Oxford University Press, New York, 1965.
- 10
-
G. Peano, Arithmetices principia nova methodo exposita, Rome, 1889.
- 11
-
, Notation de logique mathématique, Turin, 1894.
- 12
-
J. Robinson, Definability and decision problems in arithmetic, J.
Symbolic Logic 14 (1949), 98-114.
- 13
-
Th. Skolem, Uber die nicht-charakterisierbarkeit der zahlenreihe mittels
endlich oder abzahlbar unendlich vieler aussagen mit ausschliesslich
zahlvariablen, Fundamenta Mathematicae 23 (1934), 150-161.
- 14
-
, Peano's axioms and models of arithmetic, Mathematical
Interpretation of Formal Systems, North Holland, 1955.
- 15
-
Daniel Solow, How to read and do proofs, 2nd ed., John Wiley and Sons
Inc., New York, 1990.
Richard Mansfield
Wed Oct 21 14:09:45 EDT 1998