Semigroup problem for \(\text{Aff}^+ \) and related groups.

Kevin Lui \(^1\) Siddharth Venkatesh \(^2\)

\(^1\)UC Santa Barbara

\(^2\)UC Berkeley

August 7, 2013
Introduction of Problem

For certain solvable groups, we wish to prove that:

1. the closure of the semigroup generated by subsets not contained in any maximal semigroup with non-empty interior is a group.

2. arbitrarily close to any such subset is one that generates a dense semigroup.
Background

This problem have been solved for certain groups:

- Compact Extension of Nilpotent groups
- \mathbb{R}^n

Why is the problem interesting?

This problem is an obstruction to transitivity of extensions of hyperbolic systems.
Definitions

- A subset S of a group G is called *good* if the closure of the semigroup it generates is a group not contained in any connected co-dimension 1 subgroup.
- A subset S of a group G is called *great* if it generates a dense semigroup.
Our group

Define

\[G_n := \left\{ \begin{pmatrix} a & b \\ 0 & l_n \end{pmatrix} : a \in \mathbb{R}^+, b \in \mathbb{R}^n \right\} \cong \mathbb{R} \times \phi \mathbb{R}^n. \]

Note that \(G_1 = \text{Aff}^+ \) and is the simplest solvable Lie group that is not nilpotent. It is in fact the unique simply connected non-abelian 2-dimensional Lie group.
Our group

We consider a further generalization of Aff$^+$ given by

$$H_{mn} := \mathbb{R}^m \rtimes \phi \mathbb{R}^n \cong \mathbb{R}^{m-1} \times G_n$$

where ϕ is central. After identifying the a coordinate in G_n by its natural log, multiplication is given by

$$(v, a, b)(v', a', b') = (v + v', a + a', b + e^a b')$$

for $v, v' \in \mathbb{R}^{m-1}, a, a' \in \mathbb{R}, b, b' \in \mathbb{R}^n$.

Some notable facts

- Solvable
- Exponential
- Simply Connected
Definitions

- A maximal semigroup with non-empty interior of a topological group G, is a proper subsemigroup M of G with non-empty interior such that M is not a group and the only subsemigroups of G containing M are G and M.
- A subset S of a topological group G is called separated if it is not contained in any maximal semigroup with non-empty interior.
Lawson’s Theorem

Theorem

The maximal subsemigroups M with non-empty interior of a simply connected Lie group G with $G/\text{Rad } G$ compact are in one-to-one correspondence with their tangent objects

$$L(M) = \{x \in L(G) : \exp tx \in M \text{ for } t \geq 0\}$$

and which are precisely the closed half-spaces with boundary a subalgebra. We will call the images of the hyperplane subalgebras under the exponential map border subgroups.
Exponential map

Lemma

The exponential map $\gamma_{mn} \to H_{mn}$ is an analytic bijection with analytic inverse.

Proof.

If $m = (a, b)$ then

\[\exp(m) = \begin{cases} (a, \frac{b}{a}(e^a - 1)) & \text{if } a \neq 0 \\ (0, b) & \text{if } a = 0, \end{cases} \]

\[\log(x, y) = \begin{cases} (x, y \frac{x}{e^x - 1}) & \text{if } x \neq 0 \\ (0, y) & \text{if } x = 0. \end{cases} \]
Maximal semigroups of G_1

Every co-dimension 1 subspace of g_1 is a subalgebra, as it is of dimension 1. The border subgroups are the exponential images of these subalgebras. If the subalgebra is $\{t(a, b) : t \in \mathbb{R}\}$ then the corresponding border subgroup is

$$\left\{ \left(ta, \frac{b}{a} e^{ta} - 1 \right) : t \in \mathbb{R} \right\}$$

which is the curve

$$y = l(e^x - 1)$$

with $l = \pm \infty$ corresponding to the curve $x = 0$.
Facts about border subgroups

- Each nonzero point in \mathbb{R}^2 belongs to a unique border subgroup.
- For positive values of l, the curve is contained in the first and third quadrants. For negative values of l, the curve is contained in the second and fourth quadrants.
- Fix some $l \leq 0$. Then, for points z in the fourth quadrant, if l_z is the slope of the curve corresponding to z, then $l_z < l \iff z$ is below the curve corresponding to l. For points z in the second quadrant, z is below the curve corresponding to $l \iff l_z > l$.
Types of automorphisms

We have the following Lie group automorphisms of $H_{mn} := \mathbb{R}^m \times_{\phi} \mathbb{R}^n \cong \mathbb{R}^{m-1} \times G_n$:

(A) Any automorphism ψ of \mathbb{R}^{m-1} extends to an automorphism $\psi \times \text{id}$.

(B) Any automorphism ψ of \mathbb{R}^n extends to an automorphism which is the identity on the a coordinate of G_n and on each coordinate of \mathbb{R}^{m-1}.

(C) For a fixed $(v, a, b) \in H_{mn}$, there exists an automorphism defined by

$$(x, y, z) \mapsto \left(x - \frac{y}{a} v, y, z - b \frac{e^{y} - 1}{e^{a} - 1}\right)$$
Short Exact Sequence Lemma

Let the following

\[0 \to B \to G \to A \to 0 \]

be an exact sequence of topological groups. Let \(S \subseteq G \) and let \(U \) be the semigroup generated by \(S \). Let \(U(X) \) in this lemma denote the semigroup generated by a subset \(X \). Then:

1. \(\pi(U) = \pi(U) \).
2. \(\overline{U} \) is a group, then so is \(U(\pi(S)) \).
3. \(S \) is great so is \(\pi(S) \).
4. \(U(\pi(S)) \) is a group, \(\pi(U) \) is closed and \(\overline{U} \cap B \) is a group, then \(\overline{U} \) is a group.
5. If \(\pi(S) \) is great, \(\pi(U) \) is closed and \(\overline{U} \cap B \) is great, then so is \(S \).
6. \(S \) is separated so is \(\pi(S) \).
7. \(B = \mathbb{R}^n \) and \(G = \mathbb{R}^n \rtimes A \), with \(A \) second countable, and suppose \(\overline{U} \cap B \) is good. Then, \(\pi(U) \) is closed.
Good subsets of G_1

Lemma

Let $S \subseteq H_{mn}$ be separated. Let U be the semigroup generated by S and suppose \overline{U} contains $z_0 = (w, a, b), z = (w', a', b')$ with $a < 0, a' > 0$. Then, \overline{U} contains $\left(0, 0, \frac{b}{1-e^a} + \frac{b'}{e^{a'}-1}\right)$.
Good subsets of G_1

Lemma
For any separated subset S of G_1, if U is the semigroup generated by S, U contains up to automorphism elements $(a, 0), (c, d)$, $a, d > 0, c < 0$. In fact, up to an arbitrary small perturbation, S contains such elements.
Good subsets of G_1

Lemma

Suppose a semigroup U contains elements z, z' respectively in the interior the second and fourth quadrant, such that $l_z > l_{z'}$. Then, U contains an element in the interior of the third quadrant.

$z = (\ln a, b)$

$z' = (\ln a', b')$
Good subsets of G_1

Lemma

Suppose $S \subseteq G_1$ is separated with generated semigroup U containing $(a, 0), (a', b')$, $a, b' > 0, a' < 0$. Then, U contains $(c, d), c, d < 0$.

- Suppose S is separated and contains z, z_0, respectively. Since $y \geq 0$ is a maximal semigroup of G_1, S contains an element $z' = (c, d)$ with $d < 0$.
- If $c < 0$ we are done.
- If $c = 0$, then

$$z_0^k z' = \left(ka', e^{la'}d + b' \frac{1 - e^{ka'}}{1 - e^{a'}}\right).$$

As $k \to \infty$, $e^{ka'} \to 0$, giving the desired result.
Good subsets of G_1

So we may assume $c > 0$. We proceed via contradiction. Suppose U contains no points in the interior of the third quadrant. Define

\[L := \{ l_z : z \in \text{Interior of Second Quadrant} \} \]

\[L' := \{ l_z : z \in \text{Interior of Fourth Quadrant} \}. \]

By previous lemma, we have $\sup L \leq \inf L' = l$.
Good subsets of G_1

Lemma

Let $S \subseteq \mathbb{R}^n$. Let X be an arbitrary one dimensional subspace of \mathbb{R}^n and suppose $\tau : \mathbb{R}^n \rightarrow X$ is any projection. Then, if $\tau(S)$ is separated for each such X, τ, then S is separated.
Good subsets of G_1

Theorem

Suppose $S \subseteq H_{mn}$ is separated. Let U be the generated semigroup. Then, \overline{U} is a group.
Good subsets of G_1

- Note that

$$0 \rightarrow B = \mathbb{R}^n \rightarrow H_{mn} \rightarrow C \times A = \mathbb{R}^m \rightarrow 0.$$

So by the Exact Sequence Lemma, it suffices to show that $\overline{U} \cap B$ is good, for which we will use the previous lemma. Call $\overline{U} \cap B = S'$. We may assume \overline{U} contains $(0, a, 0)$ for $a > 0$.

- Choose an arbitrary one dimensional subspace X of B and projection $\tau : B \rightarrow X$. We may use an automorphism to let X be the B_1 coordinate and let B_2, \ldots, B_n be the kernel of τ. We will show that $\tau(S')$ is separated.
Good subsets of G_1

- Let π be projection onto the A and B_1 coordinate which is isomorphic to G_1.

- By previous lemmas, we may assume U contain elements $z' = (x'', a', b')$, $z'' = (x'', a'', b'')$ with $a' < 0$, $b' > 0$, a'', $b''_1 < 0$.

- Thus, using a previous lemma, we see that S' contains $(0, 0, \frac{b'}{1-ea'})$ and $(0, 0, \frac{b''}{1-ea''})$. Thus, $\tau(S')$ contains positive and negative elements and is hence separated.
Semigroup Problem 2

For certain groups, we wish to show that arbitrarily close to any good subset is a great subset.
Great subsets of \mathbb{R}^n

Lemma

Let $S \subseteq \mathbb{R}^n$. If $e_1, e_2, \ldots, e_n \in S$ and

$$v := (v_1, \ldots, v_n) \in \overline{U(S)}$$

with $v_i < 0$, $\{1, v_1, \ldots, v_n\}$ \mathbb{Z}-linearly independent then S is great.

This follows from Kronecker's Theorem on Diophantine Approximations:

Theorem

If v is defined as above then $\mathbb{Z}v \mod 1$ is dense in $[0, 1]^n$.
Second Semigroup Conjecture for \mathbb{R}^n

Lemma

For any k, the set of great k-tuples of \mathbb{R}^n is dense in the set of separated k-tuples.

Proof.

- If S is a good subset then after applying an automorphism, S contains e_1, \ldots, e_n and

$$\mathbf{v} := (v_1, \ldots, v_n) \in \overline{U(S)}$$

with $v_1, \ldots, v_n < 0$.

- For any nonzero $\alpha \in \mathbb{R}$, the set of $\mathbf{v} \in \mathbb{R}^n$ with $\{\alpha, v_1, \ldots, v_n\}$ \mathbb{Z}-linearly dependent has Lebesgue measure 0 and its complement is full.

- So given a good S, we can perturb some elements to make $\{1, v_1, \ldots, v_n\}$ \mathbb{Z} linearly independent.
Lemma

Let $S \subseteq H_{mn}$ be good. Then, there exists a Lie group automorphism Φ of H_{mn}, such that

$$(x, \ln a, 0), (x_i, \ln c_i, |1 - c_i|e_i) \in \Phi(S)$$

where $\ln a > 0$, e_i is the ith standard basis vector for $B \cong \mathbb{R}^n$.

Additionally, we can choose Φ such that either $\Phi(S)$ contains $(x', \ln a', 0)$ for $a' < 1$ or $c_1 < 1$.
Second Semigroup Conjecture for H_{mn}

Theorem

For any l, the set of great l-tuples of H_{mn} is dense in the set of separated l-tuples of H_{mn}.
Second Semigroup Conjecture for H_{mn}

Let S be separated and U be the semigroup generated by S. Suppose π_1 is projection onto \mathbb{R}^n. Then by arbitrarily small perturbation, we may assume $\pi_1(S)$ is great and S contains $z = (w, \ln a, 0), \ln a > 0, z_i = (w_i, \ln c_i, |1 - c_i|e_i)$ with either $c_1 < 1$ or an element $z' = (w', \ln a', 0)$ with $a' < 1$.

Additionally, U contains element $z'' = (w'', \ln c, b)$ with each $b_i < 0, \ln c < 0$ and $b_{i+1} < b_i - 2(1 - c)$.

However, S may no longer be separated.
Second Semigroup Conjecture for H_{mn}

- By the Exact Sequence Lemma, it suffices to show that $\overline{U} \cap B$ is great.
- By a previous lemma, \overline{U} contains the aforementioned z' and $\left(0, 0, \frac{b}{1-c}\right)$.
- Additionally, \overline{U} either contains $(0, 0, e_i)$ for each i or contains $(0, 0, e_1)$, $(0, 0, e_i)$ for some i and $(0, 0, e_1 + e_i)$ for the remaining i.
- We apply an automorphism so that \overline{U} contain $(0, 0, e_i)$ for each i. This automorphism sends $(0, 0, \frac{b}{1-c})$ to $(0, 0, b')$ such that $b'_i < 0$ and $\{1 - c, b'_1, \ldots, b'_n\}$ \mathbb{Z} linearly independent.
- Then the results for \mathbb{R}^n give us the theorem for H_{mn}.