Symplectic Topology and Area-Preserving Maps of S^2

Andrew D. Hanlon1 Daniel N. Dore2

1The Pennsylvania State University

2Princeton University

Penn State MathFest, 2013
Motivation

Question

Given a fixed area $A > 0$, is there a constant $\delta(A) > 0$, such that for any homeomorphism $f : S^2 \rightarrow S^2$ which preserves area and displaces a subset $E \subset S^2$ with area A, there is an $x \in S^2$ with $|f(x) - x| \geq \delta(A)$? What conditions are needed on E?
Motivation

Question

Given a fixed area $A > 0$, is there a constant $\delta(A) > 0$, such that for any homeomorphism $f : S^2 \to S^2$ which preserves area and displaces a subset $E \subset S^2$ with area A, there is an $x \in S^2$ with $|f(x) - x| \geq \delta(A)$? What conditions are needed on E?

Answer: Yes, but this is not true in the plane or on the torus.
Motivated by Hamilton’s equations in phase space coordinates \((p, q)\):

\[
\frac{dq}{dt} = \frac{\partial H}{\partial p}, \quad \frac{dp}{dt} = -\frac{\partial H}{\partial q}
\]

More generally,

Definition

A symplectic vector space is a real vector space with a bilinear form \(\omega\): \(V \times V \rightarrow \mathbb{R}\) that is skew-symmetric and nondegenerate.

\[
\omega(v, w) = -\omega(w, v), \quad \omega(v, w) = 0 \quad \forall w \iff v = 0
\]
Motivated by Hamilton’s equations in phase space coordinates \((p, q)\):

\[
\frac{dq}{dt} = \frac{\partial H}{\partial p}, \quad \frac{dp}{dt} = -\frac{\partial H}{\partial q}
\]

Thus, the standard 2-form on \(\mathbb{R}^{2n}\) is

\[
\omega_o = dp \wedge dq = \sum_{i=1}^{n} dp_i \wedge dq_i
\]
Motivated by Hamilton’s equations in phase space coordinates \((p, q)\):

\[
\frac{dq}{dt} = \frac{\partial H}{\partial p}, \quad \frac{dp}{dt} = -\frac{\partial H}{\partial q}
\]

Thus, the standard 2-form on \(\mathbb{R}^{2n}\) is

\[
\omega_o = dp \wedge dq = \sum_{i=1}^{n} dp_i \wedge dq_i
\]

More generally,

Definition

A symplectic vector space is real vector space with a bilinear form \(\omega : V \times V \to \mathbb{R}\) that is skew-symmetric and nondegenerate.

\[
\omega(v, w) = -\omega(w, v), \quad \omega(v, w) = 0 \forall w \iff v = 0
\]
Every symplectic vector space is even-dimensional. Why?
Every symplectic vector space is even-dimensional. Why?

The standard basis of \mathbb{R}^{2n} given by $e_1, \ldots, e_n, f_1, \ldots, f_n$ where $f_i = e_{n+i}$ forms a \textit{symplectic basis}, that is,

$$\omega_o(e_i, e_j) = \omega_o(f_i, f_j) = 0, \quad \omega_o(e_i, f_j) = \delta_{ij}$$
Every symplectic vector space is even-dimensional. Why?

The standard basis of \mathbb{R}^{2n} given by $e_1, \ldots, e_n, f_1, \ldots, f_n$ where $f_i = e_{n+i}$ forms a symplectic basis, that is,

$$\omega_o(e_i, e_j) = \omega_o(f_i, f_j) = 0, \quad \omega_o(e_i, f_j) = \delta_{ij}$$

Theorem

For any symplectic vector space (V, ω) of dimension $2n$ there exists a symplectic basis $u_1, \ldots, u_n, v_1, \ldots, v_n$ and a vector space isomorphism $\Psi : \mathbb{R}^{2n} \to V$ such that $\Psi^* \omega = \omega_o$.

Andrew Hanlon, Dan Dore
Penn State MathFest, 2013
Definition

A symplectic manifold is a smooth manifold M with a differential 2-form ω on TM that is nondegenerate and closed ($d\omega = 0$).
Symplectic Manifolds

Definition

A symplectic manifold is a smooth manifold M with a differential 2-form ω on TM that is nondegenerate and closed ($d\omega = 0$).

- M is even dimensional since each T_xM is a symplectic vector space.

- M is orientable. Why?

- If M is closed, $H_2(M, \mathbb{R}) \neq 0$. Why? This means S^n is not a symplectic manifold for $n \neq 2$. However, CP^n all have symplectic structure.

The classic example is the cotangent bundle T^*N of an n-dimensional smooth manifold N. We define coordinates in T^*N by letting q be choice of n local coordinates in N and then a 1-form on the tangent space has n components p. In these local coordinates, the natural 2-form is $\omega = \sum_{i=1}^{n} dp_i \wedge dq_i$.

Andrew Hanlon, Dan Dore
Definition

A symplectic manifold is a smooth manifold M with a differential 2-form ω on TM that is nondegenerate and closed ($d\omega = 0$).

- M is even dimensional since each T_xM is a symplectic vector space.
- M is orientable. Why?
Definition

A symplectic manifold is a smooth manifold M with a differential 2-form ω on TM that is nondegenerate and closed ($d\omega = 0$).

- M is even dimensional since each $T_x M$ is a symplectic vector space.
- M is orientable. Why?
- If M is closed, $H^2(M, \mathbb{R}) \neq 0$. Why? This means S^n is not a symplectic manifold for $n \neq 2$. However, $\mathbb{C}P^n$ all have symplectic structure.
Definition

A symplectic manifold is a smooth manifold M with a differential 2-form ω on TM that is nondegenerate and closed ($d\omega = 0$).

- M is even dimensional since each T_xM is a symplectic vector space.
- M is orientable. Why?
- If M is closed, $H^2(M, \mathbb{R}) \neq 0$. Why? This means S^n is not a symplectic manifold for $n \neq 2$. However, \mathbb{CP}^n all have symplectic structure.

The classic example is the cotangent bundle T^*N of an n-dimensional smooth manifold N. We define coordinates in T^*N by letting q be choice of n local coordinates in N and then a 1-form on the tangent space has n components p. In these local coordinates, the natural 2-form is $\omega = \sum_{i=1}^{n} dp_i \wedge dq_i$.
In fact, every symplectic manifold has this local structure:

Theorem (Darboux)

Let (M, ω) be a symplectic manifold. For each $p \in M$ there exists local coordinates $(x_1, \ldots, x_n, y_1, \ldots, y_n)$ in an open neighborhood U of p such that $\omega|_U = \sum_{i=1}^n dx_i \wedge dy_i$.
In fact, every symplectic manifold has this local structure:

Theorem (Darboux)

Let \((M, \omega)\) be a symplectic manifold. For each \(p \in M\) there exists local coordinates \((x_1, \ldots, x_n, y_1, \ldots, y_n)\) in an open neighborhood \(U\) of \(p\) such that \(\omega|_U = \sum_{i=1}^{n} dx_i \wedge dy_i.\)

There are no local invariants in symplectic geometry! This is much different than Riemannian geometry where the curvature is a local invariant.
Global Invariants

One invariant is the volume $\int_M \omega^n$, but the group of symplectomorphisms is a proper subgroup of the group of volume-preserving diffeomorphisms in dimensions greater than 2. Perhaps the most important result is
Global Invariants

One invariant is the volume $\int_M \omega^n$, but the group of symplectomorphisms is a proper subgroup of the group of volume-preserving diffeomorphisms in dimensions greater than 2. Perhaps the most important result is

Theorem (Gromov Nonsqueezing)

Let $Z^{2n}(R) = \{(x, y) \in \mathbb{R}^{2n} : x_1^2 + y_1^2 < R^2\}$ and $B^{2n}(r)$ be an open ball in \mathbb{R}^{2n}. If there is a symplectic embedding $f : B^{2n}(r) \hookrightarrow Z^{2n}(R)$ then $r \leq R$.
Global Invariants

One invariant is the volume \(\int_M \omega^n \), but the group of symplectomorphisms is a proper subgroup of the group of volume-preserving diffeomorphisms in dimensions greater than 2. Perhaps the most important result is

Theorem (Gromov Nonsqueezing)

Let \(Z^{2n}(R) = \{(x, y) \in \mathbb{R}^{2n} : x_1^2 + y_1^2 < R^2\} \) and \(B^{2n}(r) \) be an open ball in \(\mathbb{R}^{2n} \). If there is a symplectic embedding \(f : B^{2n}(r) \hookrightarrow Z^{2n}(R) \) then \(r \leq R \).

This theorem motivates a finer global invariant:

Definition

A symplectic capacity is a functor that assigns a number, \(c(M, \omega) \in [0, \infty] \), to a symplectic manifold \((M, \omega)\) such that

1. *(monotonicity)* If \(\text{dim}(M_1) = \text{dim}(M_2) \) and there is a symplectic embedding \(f : M_1 \hookrightarrow M_2 \) then \(c(M_1, \omega_1) \leq c(M_2, \omega_2) \)

2. *(conformality)* \(c(M, \lambda \omega) = |\lambda| c(M, \omega) \) for all \(\lambda \in \mathbb{R} \setminus \{0\} \)

3. *(strong nontriviality)* \(c(B^{2n}(1), \omega_o) = \pi = c(Z^{2n}(1), \omega_o) \)
The existence of a symplectic capacity is equivalent to the Nonsqueezing Theorem since it allows us to define the Gromov width:

$$w_G(M, \omega) = \sup_{r > 0} \{ \pi r^2 : B^{2n}(r) \text{ can be symplectically embedded in } M \}$$
The existence of a symplectic capacity is equivalent to the Nonsqueezing Theorem since it allows us to define the Gromov width:

\[w_G(M, \omega) = \sup_{r > 0} \left\{ \pi r^2 : B^{2n}(r) \text{ can be symplectically embedded in } M \right\} \]

▶ The Gromov width is the smallest possible capacity.
The existence of a symplectic capacity is equivalent to the Nonsqueezing Theorem since it allows us to define the Gromov width:

$$w_G(M, \omega) = \sup_{r > 0} \{ \pi r^2 : B^{2n}(r) \text{ can be symplectically embedded in } M \}$$

- The Gromov width is the smallest possible capacity.
- If $D \subset \mathbb{R}^2$ is compact, connected, and has smooth boundary then $c(D, \omega_o) = \text{Area}(D)$ for any capacity.
Symplectic Capacities

The existence of a symplectic capacity is equivalent to the Nonsqueezing Theorem since it allows us to define the Gromov width:

\[w_G(M, \omega) = \sup_{r > 0} \left\{ \pi r^2 : B^{2n}(r) \text{ can be symplectically embedded in } M \right\} \]

- The Gromov width is the smallest possible capacity.
- If \(D \subset \mathbb{R}^2 \) is compact, connected, and has smooth boundary then \(c(D, \omega_0) = \text{Area}(D) \) for any capacity.
- H. Hofer and E. Zehnder introduced a special capacity for which existence can be proved without using Gromov Nonsqueezing, but we are not quite ready.
Hamiltonians

Similar to an inner product, the symplectic form induces a canonical isomorphism $i_\omega : T_xM \to T_x^*M$ define by $i_\omega(\xi) = \omega(\cdot, \xi)$.
Similar to an inner product, the symplectic form induces a canonical isomorphism $i_\omega : T_x M \to T^*_x M$ define by $i_\omega (\xi) = \omega (\cdot, \xi)$.

Definition

A (time-dependent) Hamiltonian is a smooth function $H : [0, 1] \times M \to \mathbb{R}$. We denote $H_t = H(t, \cdot)$.

Conservation of Energy

Let $\eta \in X_t$ then $dH_t (\eta) = \omega (\eta, i^{-1} \omega (dH_t)) = \omega (\eta, \eta) = 0$.

Andrew Hanlon, Dan Dore

Penn State MathFest, 2013 8
Similar to an inner product, the symplectic form induces a canonical isomorphism $i_\omega : T_x M \to T^*_x M$ define by $i_\omega(\xi) = \omega(\cdot, \xi)$.

Definition

A (time-dependent) Hamiltonian is a smooth function $H : [0, 1] \times M \to \mathbb{R}$. We denote $H_t = H(t, \cdot)$.

- A Hamiltonian induces a family of vector fields $X_t : M \to TM$ by $i_\omega(X_t) = dH_t$.

(Conservation of Energy) Let $\eta \in X_t$ then $dH_t(\eta) = \omega(\eta, i^{-1}_\omega(\omega(dH_t))) = \omega(\eta, \eta) = 0$.

Andrew Hanlon, Dan Dore
Penn State MathFest, 2013
Similar to an inner product, the symplectic form induces a canonical
isomorphism \(i_\omega : T_xM \to T^*_xM \) define by \(i_\omega(\xi) = \omega(\cdot, \xi) \).

Definition

A (time-dependent) Hamiltonian is a smooth function
\(H : [0, 1] \times M \to \mathbb{R} \). We denote \(H_t = H(t, \cdot) \).

▶ A Hamiltonian induces a family of vector fields \(X_t : M \to TM \) by
\(i_\omega(X_t) = dH_t \).

▶ These vector fields induce diffeomorphisms \(\phi^t_H \) by
\(\frac{d}{dt}\phi^t_H = X_t \circ \phi^t_H \),
which are symplectomorphisms, i.e.,
\[(\phi^t_H)^*\omega = \omega\]
Hamiltonians

Similar to an inner product, the symplectic form induces a canonical isomorphism \(i_\omega : T_xM \to T^*_xM \) define by \(i_\omega(\xi) = \omega(\cdot, \xi) \).

Definition

A *(time-dependent)* Hamiltonian is a smooth function \(H : [0, 1] \times M \to \mathbb{R} \). We denote \(H_t = H(t, \cdot) \).

- A Hamiltonian induces a family of vector fields \(X_t : M \to TM \) by \(i_\omega(X_t) = dH_t \).
- These vector fields induce diffeomorphisms \(\phi^t_H \) by \(\frac{d}{dt}\phi^t_H = X_t \circ \phi^t_H \), which are symplectomorphisms, i.e.,

\[
(\phi^t_H)^* \omega = \omega
\]

- (Conservation of Energy) Let \(\eta \in X_t \) then

\[
dH_t(\eta) = \omega(\eta, i_\omega^{-1}(dH_t)) = \omega(\eta, \eta) = 0.
\]
We first define the Hofer norm for compactly supported Hamiltonians by

\[\| H_t \| = \max_x H(t, x) - \min_x H(t, x) \]
We first define the Hofer norm for compactly supported Hamiltonians by

\[\| H_t \| = \max_x H(t, x) - \min_x H(t, x) \]

A Hamiltonian diffeomorphism is the time-1 map of a Hamiltonian flow. Denote the group of compactly supported Hamiltonian diffeomorphisms as \(\text{Ham}_c(M, \omega) \). The Hofer norm on \(\text{Ham}_c(M, \omega) \) is defined as

\[\| \psi \| = \inf_H \left\{ \int_0^1 \| H \| dt : \psi = \phi^1_H \right\} \]
We first define the Hofer norm for compactly supported Hamiltonians by

$$\| H_t \| = \max_x H(t, x) - \min_x H(t, x)$$

A Hamiltonian diffeomorphism is the time-1 map of a Hamiltonian flow. Denote the group of compactly supported Hamiltonian diffeomorphisms as $Ham_c(M, \omega)$. The Hofer norm on $Ham_c(M, \omega)$ is defined as

$$\| \psi \| = \inf_{H} \left\{ \int_0^1 \| H \| dt : \psi = \phi^1_H \right\}$$

The Hofer-Zehnder capacity mentioned earlier is defined by

$$c_{HZ}(M, \omega) = \sup\{ \| H_t \| : H_t \text{ has no nonconstant periodic orbits with period } \leq 1 \}$$
We first define the Hofer norm for compactly supported Hamiltonians by

$$\| H_t \| = \max_x H(t, x) - \min_x H(t, x)$$

A *Hamiltonian diffeomorphism* is the time-1 map of a Hamiltonian flow. Denote the group of compactly supported Hamiltonian diffeomorphisms as $Ham_c(M, \omega)$. The Hofer norm on $Ham_c(M, \omega)$ is defined as

$$\| \psi \| = \inf_{H} \left\{ \int_0^1 \| H \| dt : \psi = \phi^1_H \right\}$$

The *Hofer-Zehnder capacity* mentioned earlier is defined by

$$c_{HZ}(M, \omega) = \sup\{\| H_t \| : H_t \text{ has no nonconstant periodic orbits with period } \leq 1\}$$

Hofer defined another capacity for open $U \subset \mathbb{R}^{2n}$ called the *displacement energy*

$$e(U) = \inf_{\psi \in Ham_c(\mathbb{R}^{2n}, \omega_0)} \{ \| \psi \| : \psi(U) \cap U = \emptyset \}$$
Hofer also proved the energy-capacity inequality

\[c_{HZ}(U) \leq e(U) \]
Hofer also proved the energy-capacity inequality

$$c_{HZ}(U) \leq e(U)$$

and the C^0 continuity of the Hofer norm

$$\|\psi\| \leq CD\|\psi\|_{C^0} = CD \sup_x \|\psi(x) - x\|$$

where $D = \text{diameter supp}(\psi)$.
Hofer’s Geometry

Hofer also proved the energy-capacity inequality

\[c_{HZ}(U) \leq e(U) \]

and the \(C^0 \) continuity of the Hofer norm

\[\|\psi\| \leq CD\|\psi\|_{C^0} = CD\sup_x \|\psi(x) - x\| \]

where \(D = \text{diameter supp}(\psi) \). And we finally have our first results:

Theorem

There exists \(\delta(A, D) > 0 \) such that for any \(\psi \in \text{Ham}_c(\mathbb{R}^{2n}, \omega_0) \) with \(D = \text{diameter supp}(\psi) \) that displaces an open set \(U \subset \mathbb{R}^{2n} \) with \(c_{HZ}(U) = A > 0 \), we have \(\|x - \psi(x)\| \geq \delta(A, D) \) for some \(x \in \mathbb{R}^{2n} \).

Corollary

There exists \(\delta(A, D) > 0 \) such that for any \(\psi \in \text{Symp}_c(\mathbb{R}^2, \omega_0) \) with \(D = \text{diameter supp}(\psi) \) that displaces an open path connected set \(U \subset \mathbb{R}^2 \) with \(\text{Area}(U) = A > 0 \), we have \(\|x - \psi(x)\| \geq \delta(A, D) \) for some \(x \in \mathbb{R}^2 \).
Spectral Norm

Unfortunately, the Hofer norm is not C^0-continuous on closed manifolds. Thus, to get our intended result we had to use the spectral norm γ on $\text{Ham}(M,\omega)$ introduced by Y. G. Oh and introduced on spectral invariants of Floer Homology theory.
Unfortunately, the Hofer norm is not C^0-continuous on closed manifolds. Thus, to get our intended result we had to use the spectral norm γ on $\text{Ham}(M, \omega)$ introduced by Y. G. Oh and introduced on spectral invariants of Floer Homology theory.

S. Seyfaddini proved the C^0 continuity of the spectral norm on closed surfaces with genus g

$$\gamma(\phi) \leq C(\|\phi\|_{C^0})^2^{-2g-1}$$
Unfortunately, the Hofer norm is not C^0-continuous on closed manifolds. Thus, to get our intended result we had to use the spectral norm γ on $\text{Ham}(M, \omega)$ introduced by Y. G. Oh and introduced on spectral invariants of Floer Homology theory.

S. Seyfaddini proved the C^0 continuity of the spectral norm on closed surfaces with genus g

$$\gamma(\phi) \leq C(\|\phi\|_{C^0})^{2^{-2g-1}}$$

M. Usher proved the spectral energy-capacity inequality

$$e_\gamma(U) \geq c_{HZ}(U)$$
Spectral Norm

Unfortunately, the Hofer norm is not C^0-continuous on closed manifolds. Thus, to get our intended result we had to use the spectral norm γ on $Ham(M, \omega)$ introduced by Y. G. Oh and introduced on spectral invariants of Floer Homology theory.

S. Seyfaddini proved the C^0 continuity of the spectral norm on closed surfaces with genus g

$$\gamma(\phi) \leq C(\|\phi\|_{C^0})^{2g-1}$$

M. Usher proved the spectral energy-capacity inequality

$$e_\gamma(U) \geq c_{HZ}(U)$$

From these we obtain

Theorem

Let (M, ω) be a closed 2-dimensional symplectic manifold. There exists $\delta(A) > 0$ such that for any $\phi \in Ham(M, \omega)$ that displaces an open set $U \subset M$ with $c_{HZ}(U) = A > 0$, we have $\|x - \phi(x)\| \geq \delta(A)$ for some $x \in M$.
Using simply connectedness of S^2, connectedness of its symplectomorphism group, and a uniform approximation theorem of Y. G. Oh we obtain

Theorem

Let (S^2, ω_0) be the sphere with the canonical two-form. There exists $\delta(A) > 0$ such that for any area-preserving homeomorphism $f : S^2 \to S^2$ that displaces the closure of an open path connected set $U \subset S^2$ with $\text{Area}(U) = A > 0$, we have $\|x - f(x)\| \geq \delta(A)$ for some $x \in S^2$.
Using simply connectedness of S^2, connectedness of its symplectomorphism group, and a uniform approximation theorem of Y. G. Oh we obtain

Theorem

Let (S^2, ω_0) be the sphere with the canonical two-form. There exists $\delta(A) > 0$ such that for any area-preserving homeomorphism $f : S^2 \to S^2$ that displaces the closure of an open path connected set $U \subset S^2$ with $\text{Area}(U) = A > 0$, we have $\|x - f(x)\| \geq \delta(A)$ for some $x \in S^2$.

Then, by using the lifting theorem of continuous maps to the universal cover we have

Corollary

There exists $\delta(A) > 0$ such that for any area-preserving homeomorphism $f : \mathbb{RP}^2 \to \mathbb{RP}^2$ that displaces the closure of an open path connected set $U \subset \mathbb{RP}^2$ with area A, we have $\|x - f(x)\| \geq \delta(A)$ for some $x \in \mathbb{RP}^2$.
Questions???