Mathematical Billiards
June 28 - August 13
TIME: MWF 10:10 am - 12:05 pm
INSTRUCTOR: SERGEI TABACHNIKOV
MAIN TOPICS include:
- Mechanical systems, configuration and phase spaces. Optics—mechanics analogy. Variational principles. Huygens principle. Example: elastic particles on the line and on the circle. Finsler billiards, magnetic billiards.
- Billiards inside the circle and the square. Dynamics of circle rotation, equidistribution. Multi-dimensional versions. Application: distribution of first digits in sequences. Symbolic description: continued fractions, Sturm sequences. Complexity of sequences.
- Optical properties of conics. Integrability, various proofs. Applications: whispering galleries, trap for a parallel beam, illumination problem, Urquhart's theorem, beating second law of thermodynamics. Poncelet porism, various proofs.
- Evolutes and involutes. Caustics of billiards and string construction. Evolute as the locus of centers of curvature. Four vertex theorem. Sturm-Hurwitz theorem and its four proofs. Topology of wave fronts and Fabricius-Bjerre theorem. Projective and spherical duality.
- Phase space of a billiard. Symplectic structure and symplectic properties of the billiard transformation. Integral geometry, Crofton formula. Applications: isoperimetric inequality, Fary's theorem (DNA inequality). Hilbert's fourth problem.
- Poincare recurrence theorem. Applications: periodic trajectories in rational polygons and in right triangles. Unfolding billiard trajectories in polygons.
- Periodic trajectories: variational approach. Birkhoff's theorem. Introduction to Morse theory. Non-convex and polygonal billiards: open problems. Two-periodic billiard trajectories and binormals.
- Mirror equation. Non-existence of caustics, Mather's theorem. Existence of caustics and KAM theory. Birkhoff's conjecture and Bialy's theorem.
- Outer (or dual) billiards. Motivation via projective duality. Area preserving property and area construction. Behavior at infinity. Rational and quasi-rational polygons. Example: regular pentagon. Outer billiard in the hyperbolic plane; Poncelet porism revisited.
- Complete integrability of the billiard map inside the ellipsoid and the geodesic flow on the ellipsoid.
![[ Logo ]](/mass/images/logos/cheese.jpg)
![[ Summer REU 2004 (Course Outline) ]](/mass/images/headers/reu/2004.jpg)
![[ MASS Program ]](/mass/images/logos/strip.jpg)