Thursday, August 21N/A, N/A
1:15pmTBA
ABSTRACT
Thursday, September 4George Andrews, Penn State University
1:15pmRamanujan, Fibonacci numbers, and Continued Fractions or Why I Took Zeckendorf's Theorem Along On My Last Trip To Canada
ABSTRACTThis talk focuses on the famous Indian genius, Ramanujan. One object will be to give some account of his meteoric rise and early death. We shall try to lead from some simple problems involving Fibonacci numbers to a discussion of some of Ramanujan's achievements including some things from his celebrated Lost Notebook.
Thursday, September 11Yuri Suhov, Penn State / University of Cambridge, UK
1:15pmIntroduction to Entropy
ABSTRACTThe entropy is a famous quantity which is used widely in Math, Physics, Biology, Economics, let alone Information Theory. The concept of entropy is also popular in culture: it inspired (and continues
to inspire) poets, artists and musicians. I will introduce and discuss basic properties of entropy which are of interest in many applications. Some of them will be quite surprising. I will also tell some elegant stories involving entropy. No preliminary knowledge of probability theory is required, apart from common sense and first principles.
Thursday, September 18John Roe, Penn State University
1:25pmCommutative implies associative?
ABSTRACTBy introducing the symbol i, with i<sup>2</sup>=-1, one can pass from the field of real numbers to the larger field of complex numbers. In the 19th century various attempts were made to define still larger "generalized number" fields, such as the quaternions and octonions, but all of these sacrifice some of the familiar "laws" of arithmetic: the quaternions are no longer commutative, the octonions not even associative. Notice that the commutative law apparently "dies" first. Around 1940, Heinz Hopf made an investigation of generalized number systems that were commutative but not necessarily associative, and he found that the reals and the complexes are the only examples. In other words, the commutative law implies the associative law (in the context in which he was working). Hopfs methods are topological, and are closely related to developments in topology in the latter half of the 20th century.
<b>Note: The talk starts at 1:25 p.m. </b>
Thursday, September 25Vishal Vasan, Penn State University
1:25pmThe William Pritchard Fluid Mechanics Laboratory
ABSTRACTFluid mechanics is a very old branch of mathematics. However it is not only the source of some of the most difficult problems in mathematics but also a very relevant area of research in the modern age. Penn State is one of the few Departments of Mathematics that houses a physical laboratory to conduct experiments in fluid mechanics. In this talk, I give a brief description of some of the experiments we perform in the lab, the physical questions being asked as well as the associated mathematics. Then we will walk down to the basement for a tour of the lab and its facilities.
Thursday, October 2Carina Curto, Penn State University
1:25pmStimulus space geometry and topology from neural activity
ABSTRACTNeural activity data can be used to infer subsets of co-active neurons in a network. By considering neurons in the hippocampus that encode position information, I will show how these data can be used to infer topological and geometric features of the stimulus space the neurons are encoding. Our results rely on an unexpected application of the Nerve Lemma from algebraic topology.
Thursday, October 16Vitaly Bergelson, Ohio State University
1:15pmRamsey Theory and Dynamics
ABSTRACTWe will start the talk with formulating and discussing some of the classical results of Ramsey theory, a branch of combinatorics which studies the structure of mathematical objects that is preserved under partitions. Next, we will show that some of these results can be naturally viewed as dynamical questions about the recurrence in topological and/or volume preserving systems. We will conclude with the discussion of some of the recent developments and open problems.
Thursday, October 23Simon Tavener, Colorado State University
1:25pmEvolution of resistance to white pine blister rust in high-elevation pines
ABSTRACTFive-needle white pines play an important role in high-elevation ecosystems but are highly susceptible to white pine blister rust (WPBR) caused by a nonnative fungal pathogen. We construct a nonlinear, stage-structured infection model to investigate the effect of WPBR on the dynamics and stand structure of high-elevation five-needle white pines. Management decisions are by definition short-term perturbations that require analysis of transient behavior and we have developed a general software package to examine both transient and equilibrium sensitivities and elasticities. The presence in a population of a resistant genotype can modify both transient and equilibrium behaviors and suggest potential new control strategies. We extend our model to include a resistant allele at a single genetic locus and provide preliminary results. This work was conducted as part of an NSF sponsored undergraduate research program (FEScUE) at the intersection of mathematics and biology.
Thursday, October 30Greg Lawler, University of Chicago
1:25pmRandom walks: simple and self-avoiding
ABSTRACTMany phenomena are modeled by walkers that wander randomly. The case of complete
randomness is well understood -- I will survey some of the key facts including the
idea that the set of points visited by a random walker in any dimension (greater than one) is two.
I will then discuss a much harder problem -- what happens when you do not allow the walker to return
to points? Many of the interesting questions about this "self-avoiding walk" are still open mathematical problems.
Thursday, November 6Thomas Tucker, University of Rochester
1:25pmSolutions to polynomials in two variables
ABSTRACTYou may remember the quadratic formula for finding solutions
to quadratic polynomials in one variable. It is natural to ask: are
there formulas like this for polynomials of higher degree? The
answer, roughly speaking, is yes. Going further, one might ask: what
about polynomials in more than one variable? Here, the answer is far
more complicated, and involves geometry in what may seem a surprising
way. One famous example of this type of polynomial equation is the
Fermat equation x^n + y^n = z^n.
Thursday, November 13Richard Schwartz, Brown University
1:25pmLengthening the edges of a tetrahedron
ABSTRACTI'll describe what happens to the volume of a tetrahedron
when one lengthens some or all of the edges of the tetrahedron. The
analysis involves the Cayley-Menger determinant, a computer algorithm
for certifying that a polynomial is positive on a simplex, and a very
pretty triangulation of the moduli space of "tetrahedron-like" labelings
of the complete graph on 4 vertices.
Thursday, November 20Alberto Bressan, Penn State University
1:25pmPDE models of traffic flow
ABSTRACTDaily traffic patterns are the result of a large number
of individual decisions, where each driver chooses an optimal
departure time and an optimal route to reach destination.

From a mathematical perspective, traffic flow can be modeled by
a family of conservation laws, describing the density of cars along each road.
In addition, one can introduce a cost functional, accounting for the
time that each driver spends on the road and a penalty for late arrival.

In this talk I shall explain how to construct solutions of these PDEs,
and discuss the existence of (i) globally optimal solutions,
minimizing the sum of the costs to all drivers,
and (ii) Nash equilibria, where no driver can lower his individual cost
by changing his own departure time, or the route taken to destination.

An intriguing mathematical problem is to understand the dynamic stability of
Nash equilibria. In this direction, some numerical experiments and
conjectures will be presented.