|
|
Baum, Paul; Higson, Nigel; Plymen, Roger. A proof of the Baum-Connes conjecture for p-adic GL(n). C. R. Acad. Sci. Paris Ser. I Math. 325 (1997), no. 2, 171-176.
MR
|
|
|
|
Chabert, Jerome; Echterhoff, Siegfried; Nest, Ryszard. The Connes-Kasparov conjecture for almost connected groups and for linear p-adic groups. Publ. Math. Inst. Hautes Etudes Sci. No. 97, (2003), 239-278.
MR
|
|
|
|
Connes, A. An analogue of the Thom isomorphism for crossed products of a C*-algebra by an action of R. Adv. in Math. 39 (1981), no. 1, 31-55.
MR
|
|
|
|
Higson, Nigel; Kasparov, Gennadi. E-theory and KK-theory for groups which act properly and isometrically on Hilbert space. Invent. Math. 144 (2001), no. 1, 23-74.
MR
|
|
|
|
Julg, Pierre. La conjecture de Baum-Connes a coefficients pour le groupe Sp(n,1). (French) [The Baum-Connes conjecture with coefficients for the group Sp(n,1)] C. R. Math. Acad. Sci. Paris 334 (2002), no. 7, 533-538.
MR
|
|
|
|
Julg, Pierre; Kasparov, Gennadi. Operator K-theory for the group SU(n,1). J. Reine Angew. Math. 463 (1995), 99-152.
MR
|
|
|
|
Kasparov, G. G. Lorentz groups: K-theory of unitary representations and crossed products. (Russian) Dokl. Akad. Nauk SSSR 275 (1984), no. 3, 541-545.
MR
|
|
|
|
Lafforgue, V. Banach KK-theory and the Baum-Connes conjecture. Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), 795-812, Higher Ed. Press, Beijing, 2002.
MR
|
|
|
|
Lafforgue, Vincent. Banach KK-theory and the Baum-Connes conjecture. European Congress of Mathematics, Vol. II (Barcelona, 2000), 31-46, Progr. Math., 202, Birkhaeuser, Basel, 2001.
MR
|
|
|
|
Lafforgue, Vincent. K-theorie bivariante pour les algebres de Banach et conjecture de Baum-Connes. (French) [Bivariant K-theory for Banach algebras and the Baum-Connes conjecture] Invent. Math. 149 (2002), no. 1, 1-95.
MR
|
|
|
|
Mineyev, Igor; Yu, Guoliang. The Baum-Connes conjecture for hyperbolic groups. Invent. Math. 149 (2002), no. 1, 97-122.
MR
|
|
|
|
Penington, M. G.; Plymen, R. J. The Dirac operator and the principal series for complex semisimple Lie groups. J. Funct. Anal. 53 (1983), no. 3, 269-286.
MR
|
|
|
|
Pimsner, Michael V. K-theory for groups acting on trees. Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), 979-986, Math. Soc. Japan, Tokyo, 1991.
MR
|
|
|
|
Puschnigg, Michael. The Kadison-Kaplansky conjecture for word-hyperbolic groups. Invent. Math. 149 (2002), no. 1, 153-194.
MR
|
|
|
|
Seminaire Bourbaki. Vol. 1997/98. (French) [Bourbaki Seminar. Vol. 1997/98] Exposes 835-849. Asterisque No. 252 (1998). Societe Mathematique de France, Paris, 1998. pp. i-iv and 1-367.
MR
|
|
|
|
Skandalis, Georges. Progres recents sur la conjecture de Baum-Connes. Contribution de Vincent Lafforgue. (French) [Recent progress on the Baum-Connes conjecture: the contribution of Vincent Lafforgue] Seminaire Bourbaki, Vol. 1999/2000. Asterisque No. 276 (2002), 105-135.
MR
|
|
|
|
Tu, Jean-Louis. La conjecture de Baum-Connes pour les feuilletages moyennables. (French) [The Baum-Connes conjecture for amenable foliations] K-Theory 17 (1999), no. 3, 215-264.
MR
|
|
|
|
Tu, Jean-Louis. The Baum-Connes conjecture and discrete group actions on trees. K-Theory 17 (1999), no. 4, 303-318.
MR
|
|
|
|
Valette, Alain. Dirac induction for semisimple Lie groups having one conjugacy class of Cartan subgroups. Operator algebras and their connections with topology and ergodic theory (Busteni, 1983), 526-555, Lecture Notes in Math., 1132, Springer, Berlin, 1985.
MR
|
|
|
|
Wassermann, Antony. Une demonstration de la conjecture de Connes-Kasparov pour les groupes de Lie lineaires connexes reductifs. (French) [A proof of the Connes-Kasparov conjecture for connected reductive linear Lie groups] C. R. Acad. Sci. Paris Ser. I Math. 304 (1987), no. 18, 559-562.
MR
|
|